BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 30022438)

  • 1. PACAP38-Mediated Bladder Afferent Nerve Activity Hyperexcitability and Ca
    Heppner TJ; Hennig GW; Nelson MT; May V; Vizzard MA
    J Mol Neurosci; 2019 Jul; 68(3):348-356. PubMed ID: 30022438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purinergic signalling underlies transforming growth factor-β-mediated bladder afferent nerve hyperexcitability.
    Gonzalez EJ; Heppner TJ; Nelson MT; Vizzard MA
    J Physiol; 2016 Jul; 594(13):3575-88. PubMed ID: 27006168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of CYP-induced cystitis on PACAP/VIP and receptor expression in micturition pathways and bladder function in mice with overexpression of NGF in urothelium.
    Girard BM; Tompkins JD; Parsons RL; May V; Vizzard MA
    J Mol Neurosci; 2012 Nov; 48(3):730-43. PubMed ID: 22700375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role for pituitary adenylate cyclase activating polypeptide in cystitis-induced plasticity of micturition reflexes.
    Braas KM; May V; Zvara P; Nausch B; Kliment J; Dunleavy JD; Nelson MT; Vizzard MA
    Am J Physiol Regul Integr Comp Physiol; 2006 Apr; 290(4):R951-62. PubMed ID: 16322346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrabladder PAC1 Receptor Antagonist, PACAP(6-38), Reduces Urinary Bladder Frequency and Pelvic Sensitivity in Mice Exposed to Repeated Variate Stress (RVS).
    Girard BM; Campbell SE; Beca KI; Perkins M; Hsiang H; May V; Vizzard MA
    J Mol Neurosci; 2021 Aug; 71(8):1575-1588. PubMed ID: 32613552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intravesical PAC1 Receptor Antagonist, PACAP(6-38), Reduces Urinary Bladder Frequency and Pelvic Sensitivity in NGF-OE Mice.
    Girard BM; Malley SE; Mathews MM; May V; Vizzard MA
    J Mol Neurosci; 2016 Jun; 59(2):290-9. PubMed ID: 27146136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PACAP-mediated ATP release from rat urothelium and regulation of PACAP/VIP and receptor mRNA in micturition pathways after cyclophosphamide (CYP)-induced cystitis.
    Girard BM; Wolf-Johnston A; Braas KM; Birder LA; May V; Vizzard MA
    J Mol Neurosci; 2008 Nov; 36(1-3):310-20. PubMed ID: 18563302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PACAP/PAC1 Expression and Function in Micturition Pathways.
    Ojala J; Tooke K; Hsiang H; Girard BM; May V; Vizzard MA
    J Mol Neurosci; 2019 Jul; 68(3):357-367. PubMed ID: 30259317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in pituitary adenylate cyclase activating polypeptide expression in urinary bladder pathways after spinal cord injury.
    Zvarova K; Dunleavy JD; Vizzard MA
    Exp Neurol; 2005 Mar; 192(1):46-59. PubMed ID: 15698618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PACAP/Receptor System in Urinary Bladder Dysfunction and Pelvic Pain Following Urinary Bladder Inflammation or Stress.
    Girard BM; Tooke K; Vizzard MA
    Front Syst Neurosci; 2017; 11():90. PubMed ID: 29255407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pituitary adenylate cyclase-activating polypeptide and PACAP receptor expression and function in the rat adrenal gland.
    Mazzocchi G; Malendowicz LK; Neri G; Andreis PG; Ziolkowska A; Gottardo L; Nowak KW; Nussdorfer GG
    Int J Mol Med; 2002 Mar; 9(3):233-43. PubMed ID: 11836629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pituitary adenylyl cyclase-activating polypeptide (PACAP) and its receptor (PAC1-R) are positioned to modulate afferent signaling in the cochlea.
    Drescher MJ; Drescher DG; Khan KM; Hatfield JS; Ramakrishnan NA; Abu-Hamdan MD; Lemonnier LA
    Neuroscience; 2006 Sep; 142(1):139-64. PubMed ID: 16876955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pituitary adenylate cyclase-activating polypeptide (PACAP) contributes to the proliferation of hematopoietic progenitor cells in murine bone marrow via PACAP-specific receptor.
    Xu Z; Ohtaki H; Watanabe J; Miyamoto K; Murai N; Sasaki S; Matsumoto M; Hashimoto H; Hiraizumi Y; Numazawa S; Shioda S
    Sci Rep; 2016 Feb; 6():22373. PubMed ID: 26925806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. VPAC2-R mediates the lipolytic effects of pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal polypeptide in primary rat adipocytes.
    Akesson L; Ahrén B; Edgren G; Degerman E
    Endocrinology; 2005 Feb; 146(2):744-50. PubMed ID: 15514088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulatory effect of pituitary adenylate cyclase-activating polypeptide 6-38, M65 and vasoactive intestinal polypeptide 6-28 on trigeminal sensory neurons.
    Sághy É; Payrits M; Helyes Z; Reglődi D; Bánki E; Tóth G; Couvineau A; Szőke É
    Neuroscience; 2015 Nov; 308():144-56. PubMed ID: 26321242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The presence and distribution of pituitary adenylate cyclase activating polypeptide and its receptor in the snail Helix pomatia.
    Hernádi L; Pirger Z; Kiss T; Németh J; Mark L; Kiss P; Tamas A; Lubics A; Toth G; Shioda S; Reglodi D
    Neuroscience; 2008 Aug; 155(2):387-402. PubMed ID: 18590802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Up-regulation of pituitary adenylate cyclase-activating polypeptide in urinary bladder pathways after chronic cystitis.
    Vizzard MA
    J Comp Neurol; 2000 May; 420(3):335-48. PubMed ID: 10754506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facilitatory effects of pituitary adenylate cyclase activating polypeptide (PACAP) on neurons in the magnocellular portion of the rat hypothalamic paraventricular nucleus (PVN) in vitro.
    Uchimura D; Katafuchi T; Hori T; Yanaihara N
    J Neuroendocrinol; 1996 Feb; 8(2):137-43. PubMed ID: 8868261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pituitary adenylate cyclase activating polypeptide-mediated intracrine signaling in the testicular germ cells.
    Li M; Funahashi H; Mbikay M; Shioda S; Arimura A
    Endocrine; 2004 Feb; 23(1):59-75. PubMed ID: 15034198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensory Neurons, PIEZO Channels and PAC1 Receptors Regulate the Mechanosensitive Release of Soluble Ectonucleotidases in the Murine Urinary Bladder Lamina Propria.
    Aresta Branco MSL; Gutierrez Cruz A; Borhani Peikani M; Mutafova-Yambolieva VN
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.