These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 30022642)

  • 1. Enhancing in vivo renal ischemia assessment by high-dynamic-range fluorescence molecular imaging.
    Gao Y; Zhou Y; Liu F; Luo J
    J Biomed Opt; 2018 Jul; 23(7):1-9. PubMed ID: 30022642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of temperature on multiparametric evaluation of hindlimb ischemia with dynamic fluorescence imaging.
    Cai W; Guang H; Cai C; Luo J
    J Biophotonics; 2017 Jun; 10(6-7):811-820. PubMed ID: 27925417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facilitating in vivo tumor localization by principal component analysis based on dynamic fluorescence molecular imaging.
    Gao Y; Chen M; Wu J; Zhou Y; Cai C; Wang D; Luo J
    J Biomed Opt; 2017 Sep; 22(9):1-9. PubMed ID: 28929642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renal-clearable Molecular Semiconductor for Second Near-Infrared Fluorescence Imaging of Kidney Dysfunction.
    Huang J; Xie C; Zhang X; Jiang Y; Li J; Fan Q; Pu K
    Angew Chem Int Ed Engl; 2019 Oct; 58(42):15120-15127. PubMed ID: 31452298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early Detection and Noninvasive Staging of Kidney Dysfunction by a PEGylated Conventional Fluorophore via GFR-Sensitive Renal Transport.
    Peng Y; Qi Y; Xu M; Chen Y; Wang X; Jiang X; Du B
    Bioconjug Chem; 2024 Aug; 35(8):1258-1268. PubMed ID: 39078129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NAG-targeting fluorescence based probe for precision diagnosis of kidney injury.
    Yan F; Tian X; Luan Z; Feng L; Ma X; James TD
    Chem Commun (Camb); 2019 Feb; 55(13):1955-1958. PubMed ID: 30681673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High dynamic range ultrasound imaging.
    Degirmenci A; Perrin DP; Howe RD
    Int J Comput Assist Radiol Surg; 2018 May; 13(5):721-729. PubMed ID: 29549552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiparametric evaluation of hindlimb ischemia using time-series indocyanine green fluorescence imaging.
    Guang H; Cai C; Zuo S; Cai W; Zhang J; Luo J
    J Biophotonics; 2017 Mar; 10(3):456-464. PubMed ID: 27135903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image Restoration for Fluorescence Planar Imaging with Diffusion Model.
    Zhang X; Gong Y; Li Y; Cao X; Zhu S
    Biomed Res Int; 2017; 2017():2010512. PubMed ID: 29279843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extended dynamic range imaging for noise mitigation in fluorescence anisotropy imaging.
    Feruglio P; Vinegoni C; Weissleder R
    J Biomed Opt; 2020 Aug; 25(8):. PubMed ID: 32820624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust overlay schemes for the fusion of fluorescence and color channels in biological imaging.
    Glatz J; Symvoulidis P; Garcia-Allende PB; Ntziachristos V
    J Biomed Opt; 2014 Apr; 19(4):040501. PubMed ID: 24695844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noninvasive evaluation of renal pH homeostasis after ischemia reperfusion injury by CEST-MRI.
    Longo DL; Cutrin JC; Michelotti F; Irrera P; Aime S
    NMR Biomed; 2017 Jul; 30(7):. PubMed ID: 28370530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Water-Soluble AIEgen for Noninvasive Diagnosis of Kidney Fibrosis via SWIR Fluorescence and Photoacoustic Imaging.
    Yan D; Li T; Yang Y; Niu N; Wang D; Ge J; Wang L; Zhang R; Wang D; Tang BZ
    Adv Mater; 2022 Dec; 34(50):e2206643. PubMed ID: 36222386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Longitudinal assessment of rabbit renal fibrosis induced by unilateral ureteral obstruction using two-dimensional susceptibility weighted imaging.
    Zhang JG; Xing ZY; Zha TT; Tian XJ; Du YN; Chen J; Xing W
    J Magn Reson Imaging; 2018 Jun; 47(6):1572-1577. PubMed ID: 29236342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser line scanning for fluorescence reflectance imaging: a phantom study and in vivo validation of the enhancement of contrast and resolution.
    Fantoni F; Hervé L; Poher V; Gioux S; Mars JI; Dinten JM
    J Biomed Opt; 2014; 19(10):106003. PubMed ID: 25271541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian Framework Based Direct Reconstruction of Fluorescence Parametric Images.
    Zhang G; Pu H; He W; Liu F; Luo J; Bai J
    IEEE Trans Med Imaging; 2015 Jun; 34(6):1378-91. PubMed ID: 25622312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amplification of near-infrared fluorescence in semiconducting polymer nanoprobe for grasping the behaviors of systemically administered endothelial cells in ischemia treatment.
    Mao D; Liu J; Ji S; Wang T; Hu Y; Zheng D; Yang R; Kong D; Ding D
    Biomaterials; 2017 Oct; 143():109-119. PubMed ID: 28783593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo time domain optical imaging of renal ischemia-reperfusion injury: discrimination based on fluorescence lifetime.
    Abulrob A; Brunette E; Slinn J; Baumann E; Stanimirovic D
    Mol Imaging; 2007; 6(5):304-14. PubMed ID: 18092515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Contrast-Enhanced Computed Tomography: A New Diagnostic Tool to Assess Renal Perfusion After Ischemia-Reperfusion Injury in Mice: Correlation of Perfusion Deficit to Histopathologic Damage.
    Braunagel M; Helck A; Wagner A; Schupp N; Bröcker V; Reiser M; Notohamiprodjo M; Meiser B; Habicht A
    Invest Radiol; 2016 May; 51(5):316-22. PubMed ID: 26741893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Image Analysis Algorithm-Based Platform for Determining Micron and Higher Aggregate Size Distribution of Therapeutic IgG Using Brightfield and Fluorescence Microscope Images.
    Sreenivasan S; Sonawat D; Rathore AS
    Pharm Res; 2021 Oct; 38(10):1747-1763. PubMed ID: 34664205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.