BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30022643)

  • 1. Light-assisted drying for protein stabilization.
    Young M; Antczak A; Wawak A; Elliott G; Trammell S
    J Biomed Opt; 2018 Jul; 23(7):1-8. PubMed ID: 30022643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-assisted drying for anhydrous preservation of biological samples: optical characterization of the trehalose preservation matrix.
    Young MA; Furr DP; McKeough RQ; Elliott GD; Trammell SR
    Biomed Opt Express; 2020 Feb; 11(2):801-816. PubMed ID: 32133224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Application of Light-Assisted Drying to the Thermal Stabilization of Nucleic Acid Nanoparticles.
    Anh Lam P; Furr DP; Tran A; McKeough RQ; Beasock D; Chandler M; Afonin KA; Trammell SR
    Biopreserv Biobank; 2022 Oct; 20(5):451-460. PubMed ID: 36067075
    [No Abstract]   [Full Text] [Related]  

  • 4. Light-Assisted Drying for the Thermal Stabilization of Nucleic Acid Nanoparticles and Other Biologics.
    Trammell SR
    Methods Mol Biol; 2023; 2709():117-130. PubMed ID: 37572276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forced and natural convective drying of trehalose/water thin films: implication in the desiccation preservation of Mammalian cells.
    Chen B; Fowler A; Bhowmick S
    J Biomech Eng; 2006 Jun; 128(3):335-46. PubMed ID: 16706583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein Aggregation in Frozen Trehalose Formulations: Effects of Composition, Cooling Rate, and Storage Temperature.
    Connolly BD; Le L; Patapoff TW; Cromwell MEM; Moore JMR; Lam P
    J Pharm Sci; 2015 Dec; 104(12):4170-4184. PubMed ID: 26398200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the relaxation characteristics of sugar glasses embedded in microfiber substrates.
    Weng L; Elliott GD
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():422-9. PubMed ID: 25280724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advancing microwave technology for dehydration processing of biologics.
    Cellemme SL; Van Vorst M; Paramore E; Elliott GD
    Biopreserv Biobank; 2013 Oct; 11(5):278-84. PubMed ID: 24835259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct effects of sucrose and trehalose on protein stability during supercritical fluid drying and freeze-drying.
    Jovanović N; Bouchard A; Hofland GW; Witkamp GJ; Crommelin DJ; Jiskoot W
    Eur J Pharm Sci; 2006 Mar; 27(4):336-45. PubMed ID: 16338123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization of the restriction enzyme EcoRI dried with trehalose and other selected glass-forming solutes.
    Rossi S; Buera MP; Moreno S; Chirife J
    Biotechnol Prog; 1997; 13(5):609-16. PubMed ID: 9336981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of melibiose and trehalose as stabilising excipients for spray-dried β-galactosidase formulations.
    Lipiäinen T; Räikkönen H; Kolu AM; Peltoniemi M; Juppo A
    Int J Pharm; 2018 May; 543(1-2):21-28. PubMed ID: 29567196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling of nectarine drying under near infrared - Vacuum conditions.
    Alaei B; Chayjan RA
    Acta Sci Pol Technol Aliment; 2015; 14(1):15-27. PubMed ID: 28068016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A spin-drying technique for lyopreservation of mammalian cells.
    Chakraborty N; Chang A; Elmoazzen H; Menze MA; Hand SC; Toner M
    Ann Biomed Eng; 2011 May; 39(5):1582-91. PubMed ID: 21293974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ precipitation and vacuum drying of interferon alpha-2a: development of a single-step process for obtaining dry, stable protein formulation.
    Kumar V; Sharma VK; Kalonia DS
    Int J Pharm; 2009 Jan; 366(1-2):88-98. PubMed ID: 18824225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of water content on the glass transition temperature of mixtures of sugars, polymers, and penetrating cryoprotectants in physiological buffer.
    Drake AC; Lee Y; Burgess EM; Karlsson JOM; Eroglu A; Higgins AZ
    PLoS One; 2018; 13(1):e0190713. PubMed ID: 29304068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Water on Structure and Dynamics of Trehalose Glasses at Low Water Contents and its Relationship to Preservation Outcomes.
    Weng L; Ziaei S; Elliott GD
    Sci Rep; 2016 Jul; 6():28795. PubMed ID: 27387435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Instability of bacteriophages in spray-dried trehalose powders is caused by crystallization of the matrix.
    Vandenheuvel D; Meeus J; Lavigne R; Van den Mooter G
    Int J Pharm; 2014 Sep; 472(1-2):202-5. PubMed ID: 24950368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Investigation of the recrystallization of trehalose as a good glass-former excipient].
    Katona G; Orsolya JL; Szabóné RP
    Acta Pharm Hung; 2014; 84(1):7-14. PubMed ID: 24809162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trehalose limits BSA aggregation in spray-dried formulations at high temperatures: implications in preparing polymer implants for long-term protein delivery.
    Rajagopal K; Wood J; Tran B; Patapoff TW; Nivaggioli T
    J Pharm Sci; 2013 Aug; 102(8):2655-66. PubMed ID: 23754501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Desiccation kinetics and biothermodynamics of glass forming trehalose solutions in thin films.
    He X; Fowler A; Menze M; Hand S; Toner M
    Ann Biomed Eng; 2008 Aug; 36(8):1428-39. PubMed ID: 18500553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.