BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30022671)

  • 21. High Porosity in Nanostructured
    Wang Y; Liu WD; Gao H; Wang LJ; Li M; Shi XL; Hong M; Wang H; Zou J; Chen ZG
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31237-31244. PubMed ID: 31397997
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hierarchical Cellular Structured Ceramic Nanofibrous Aerogels with Temperature-Invariant Superelasticity for Thermal Insulation.
    Dou L; Zhang X; Cheng X; Ma Z; Wang X; Si Y; Yu J; Ding B
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):29056-29064. PubMed ID: 31330101
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Super-Insulating Transparent Polyisocyanurate-Polyurethane Aerogels: Analysis of Thermal Conductivity and Mechanical Properties.
    Merillas B; Villafañe F; Rodríguez-Pérez MÁ
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889633
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices.
    Meza LR; Das S; Greer JR
    Science; 2014 Sep; 345(6202):1322-6. PubMed ID: 25214624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanoarchitected metal/ceramic interpenetrating phase composites.
    Bauer J; Sala-Casanovas M; Amiri M; Valdevit L
    Sci Adv; 2022 Aug; 8(33):eabo3080. PubMed ID: 35977008
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Additive manufacturing of 3D nano-architected metals.
    Vyatskikh A; Delalande S; Kudo A; Zhang X; Portela CM; Greer JR
    Nat Commun; 2018 Feb; 9(1):593. PubMed ID: 29426947
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Soft Phonon Modes Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance in AgCuTe.
    Roychowdhury S; Jana MK; Pan J; Guin SN; Sanyal D; Waghmare UV; Biswas K
    Angew Chem Int Ed Engl; 2018 Apr; 57(15):4043-4047. PubMed ID: 29488301
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Supramolecular Interactions Lead to Remarkably High Thermal Conductivities in Interpenetrated Two-Dimensional Porous Crystals.
    Dionne CJ; Rahman MA; Hopkins PE; Giri A
    Nano Lett; 2022 Apr; 22(7):3071-3076. PubMed ID: 35324214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measurement of anisotropic thermal conductivity of a dense forest of nanowires using the 3
    Singhal D; Paterson J; Tainoff D; Richard J; Ben-Khedim M; Gentile P; Cagnon L; Bourgault D; Buttard D; Bourgeois O
    Rev Sci Instrum; 2018 Aug; 89(8):084902. PubMed ID: 30184711
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aerosol jet printed 3 omega sensors for thermal conductivity measurement.
    Kempf N; Zhang Y
    Rev Sci Instrum; 2021 Oct; 92(10):105008. PubMed ID: 34717438
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anisotropic and hierarchical SiC@SiO
    Su L; Wang H; Niu M; Dai S; Cai Z; Yang B; Huyan H; Pan X
    Sci Adv; 2020 Jun; 6(26):eaay6689. PubMed ID: 32637589
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanical nanolattices printed using nanocluster-based photoresists.
    Li Q; Kulikowski J; Doan D; Tertuliano OA; Zeman CJ; Wang MM; Schatz GC; Gu XW
    Science; 2022 Nov; 378(6621):768-773. PubMed ID: 36395243
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Localised Ag(+) vibrations at the origin of ultralow thermal conductivity in layered thermoelectric AgCrSe2.
    Damay F; Petit S; Rols S; Braendlein M; Daou R; Elkaïm E; Fauth F; Gascoin F; Martin C; Maignan A
    Sci Rep; 2016 Mar; 6():23415. PubMed ID: 27000414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D Graphene-Nanowire "Sandwich" Thermal Interface with Ultralow Resistance and Stiffness.
    Jing L; Cheng R; Garg R; Gong W; Lee I; Schmit A; Cohen-Karni T; Zhang X; Shen S
    ACS Nano; 2023 Feb; 17(3):2602-2610. PubMed ID: 36649646
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultralow thermal conductivity of multilayers with highly dissimilar Debye temperatures.
    Dechaumphai E; Lu D; Kan JJ; Moon J; Fullerton EE; Liu Z; Chen R
    Nano Lett; 2014 May; 14(5):2448-55. PubMed ID: 24730544
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Study on Thermal Conductivities of Aromatic Polyimide Aerogels.
    Feng J; Wang X; Jiang Y; Du D; Feng J
    ACS Appl Mater Interfaces; 2016 May; 8(20):12992-6. PubMed ID: 27149155
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultralow Thermal Conductivity and Thermal Diffusivity of Graphene/Metal Heterostructures through Scarcity of Low-Energy Modes in Graphene.
    Zheng W; Huang B; Koh YK
    ACS Appl Mater Interfaces; 2020 Feb; 12(8):9572-9579. PubMed ID: 31909972
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An overview on alumina-silica-based aerogels.
    Almeida CMR; Ghica ME; Durães L
    Adv Colloid Interface Sci; 2020 Aug; 282():102189. PubMed ID: 32593008
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Systematic Generation, Analysis, and Characterization of 3D Micro-architected Metamaterials.
    Trifale NT; Nauman EA; Yazawa K
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35534-35544. PubMed ID: 27977116
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unusual Thermal Boundary Resistance in Halide Perovskites: A Way To Tune Ultralow Thermal Conductivity for Thermoelectrics.
    Liu T; Yue SY; Ratnasingham S; Degousée T; Varsini P; Briscoe J; McLachlan MA; Hu M; Fenwick O
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):47507-47515. PubMed ID: 31752489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.