These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30022671)

  • 41. Bulk-like Intrinsic Phonon Thermal Conductivity of Micrometer-Thick AlN Films.
    Koh YR; Cheng Z; Mamun A; Bin Hoque MS; Liu Z; Bai T; Hussain K; Liao ME; Li R; Gaskins JT; Giri A; Tomko J; Braun JL; Gaevski M; Lee E; Yates L; Goorsky MS; Luo T; Khan A; Graham S; Hopkins PE
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29443-29450. PubMed ID: 32491824
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Record-Low and Anisotropic Thermal Conductivity of a Quasi-One-Dimensional Bulk ZrTe
    Zhu J; Feng T; Mills S; Wang P; Wu X; Zhang L; Pantelides ST; Du X; Wang X
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40740-40747. PubMed ID: 30387354
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interpenetrating Hollow Microlattice Metamaterial Enables Efficient Sound-Absorptive and Deformation-Recoverable Capabilities.
    Li Z; Li X; Wang X; Wang Z; Zhai W
    ACS Appl Mater Interfaces; 2023 May; 15(20):24868-24879. PubMed ID: 37086187
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Extreme mechanical resilience of self-assembled nanolabyrinthine materials.
    Portela CM; Vidyasagar A; Krödel S; Weissenbach T; Yee DW; Greer JR; Kochmann DM
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):5686-5693. PubMed ID: 32132212
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metal matrix-metal nanoparticle composites with tunable melting temperature and high thermal conductivity for phase-change thermal storage.
    Liu M; Ma Y; Wu H; Wang RY
    ACS Nano; 2015 Feb; 9(2):1341-51. PubMed ID: 25610944
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Origins of ultralow thermal conductivity in bulk [6,6]-phenyl-C61-butyric acid methyl ester (PCBM).
    Pöhls JH; Johnson MB; White MA
    Phys Chem Chem Phys; 2016 Jan; 18(2):1185-90. PubMed ID: 26660277
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Concerted Rattling in CsAg5 Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance.
    Lin H; Tan G; Shen JN; Hao S; Wu LM; Calta N; Malliakas C; Wang S; Uher C; Wolverton C; Kanatzidis MG
    Angew Chem Int Ed Engl; 2016 Sep; 55(38):11431-6. PubMed ID: 27513458
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Two-channel model for ultralow thermal conductivity of crystalline Tl
    Mukhopadhyay S; Parker DS; Sales BC; Puretzky AA; McGuire MA; Lindsay L
    Science; 2018 Jun; 360(6396):1455-1458. PubMed ID: 29954978
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Coherent control of thermal phonon transport in van der Waals superlattices.
    Guo R; Jho YD; Minnich AJ
    Nanoscale; 2018 Aug; 10(30):14432-14440. PubMed ID: 29808882
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermal Conductivity of Nanoporous Materials: Where Is the Limit?
    Merillas B; Vareda JP; Martín-de León J; Rodríguez-Pérez MÁ; Durães L
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808603
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Large Seebeck coefficients of protonated titanate nanotubes for high-temperature thermoelectric conversion.
    Miao L; Tanemura S; Huang R; Liu CY; Huang CM; Xu G
    ACS Appl Mater Interfaces; 2010 Aug; 2(8):2355-9. PubMed ID: 20735107
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Diffusive nature of thermal transport in stanene.
    Nissimagoudar AS; Manjanath A; Singh AK
    Phys Chem Chem Phys; 2016 May; 18(21):14257-63. PubMed ID: 27169141
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tailoring thermal insulation architectures from additive manufacturing.
    An L; Guo Z; Li Z; Fu Y; Hu Y; Huang Y; Yao F; Zhou C; Ren S
    Nat Commun; 2022 Jul; 13(1):4309. PubMed ID: 35879371
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Few-Layer Nanosheets of n-Type SnSe
    Saha S; Banik A; Biswas K
    Chemistry; 2016 Oct; 22(44):15634-15638. PubMed ID: 27599196
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultralight and robust aerogels based on nanochitin towards water-resistant thermal insulators.
    Yan Y; Ge F; Qin Y; Ruan M; Guo Z; He C; Wang Z
    Carbohydr Polym; 2020 Nov; 248():116755. PubMed ID: 32919557
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phonon thermal transport in silicene-germanene superlattice: a molecular dynamics study.
    Wang X; Hong Y; Chan PKL; Zhang J
    Nanotechnology; 2017 Jun; 28(25):255403. PubMed ID: 28486215
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Double-negative-index ceramic aerogels for thermal superinsulation.
    Xu X; Zhang Q; Hao M; Hu Y; Lin Z; Peng L; Wang T; Ren X; Wang C; Zhao Z; Wan C; Fei H; Wang L; Zhu J; Sun H; Chen W; Du T; Deng B; Cheng GJ; Shakir I; Dames C; Fisher TS; Zhang X; Li H; Huang Y; Duan X
    Science; 2019 Feb; 363(6428):723-727. PubMed ID: 30765563
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhancing Thermal Transport in Layered Nanomaterials.
    Malhotra A; Kothari K; Maldovan M
    Sci Rep; 2018 Jan; 8(1):1880. PubMed ID: 29382869
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phonon Speed, Not Scattering, Differentiates Thermal Transport in Lead Halide Perovskites.
    Elbaz GA; Ong WL; Doud EA; Kim P; Paley DW; Roy X; Malen JA
    Nano Lett; 2017 Sep; 17(9):5734-5739. PubMed ID: 28806090
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Note: Thermal conductivity measurement of individual porous polyimide fibers using a modified wire-shape 3
    Qiu L; Ouyang Y; Feng Y; Zhang X
    Rev Sci Instrum; 2018 Sep; 89(9):096112. PubMed ID: 30278753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.