BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 3002274)

  • 1. Effects of t-butyl hydroperoxide on NADPH, glutathione, and the respiratory burst of rat alveolar macrophages.
    Sutherland MW; Nelson J; Harrison G; Forman HJ
    Arch Biochem Biophys; 1985 Dec; 243(2):325-31. PubMed ID: 3002274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of selenium-dependent glutathione peroxidase in antioxidant defenses in rat alveolar macrophages.
    Loeb GA; Skelton DC; Coates TD; Forman HJ
    Exp Lung Res; 1988; 14 Suppl():921-36. PubMed ID: 3208729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rat alveolar macrophages require NADPH for superoxide production in the respiratory burst. Effect of NADPH depletion by paraquat.
    Forman HJ; Nelson J; Fisher AB
    J Biol Chem; 1980 Oct; 255(20):9879-83. PubMed ID: 6253456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. tert.-Butyl hydroperoxide metabolism and stimulation of the pentose phosphate pathway in isolated rat hepatocytes.
    Rush GF; Alberts D
    Toxicol Appl Pharmacol; 1986 Sep; 85(3):324-31. PubMed ID: 2945286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutathione depletion and formation of glutathione-protein mixed disulfide following exposure of brain mitochondria to oxidative stress.
    Ravindranath V; Reed DJ
    Biochem Biophys Res Commun; 1990 Jun; 169(3):1075-9. PubMed ID: 2363716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. The relative roles of haem- and glutathione-dependent decomposition of t-butyl hydroperoxide and membrane lipid hydroperoxides in lipid peroxidation and haemolysis.
    Trotta RJ; Sullivan SG; Stern A
    Biochem J; 1983 Jun; 212(3):759-72. PubMed ID: 6882393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The reduction of glutathione disulfide produced by t-butyl hydroperoxide in respiring mitochondria.
    Liu H; Kehrer JP
    Free Radic Biol Med; 1996; 20(3):433-42. PubMed ID: 8720915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyridine-nucleotide oxidation, Ca2+ cycling and membrane damage during tert-butyl hydroperoxide metabolism by rat-liver mitochondria.
    Bellomo G; Martino A; Richelmi P; Moore GA; Jewell SA; Orrenius S
    Eur J Biochem; 1984 Apr; 140(1):1-6. PubMed ID: 6705788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protection of rat hepatocytes from tert-butyl hydroperoxide-induced injury by catechol.
    Rush GF; Yodis LA; Alberts D
    Toxicol Appl Pharmacol; 1986 Jul; 84(3):607-16. PubMed ID: 3726880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutathione disulfide reduction in tumor mitochondria after t-butyl hydroperoxide treatment.
    Brodie AE; Reed DJ
    Chem Biol Interact; 1992 Sep; 84(2):125-32. PubMed ID: 1394620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The time-course of mixed disulfide formation between GSH and proteins in rat blood after oxidative stress with tert-butyl hydroperoxide.
    Di Simplicio P; Rossi R
    Biochim Biophys Acta; 1994 Apr; 1199(3):245-52. PubMed ID: 8161563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of hydroperoxide degradation by NADP-glutathione system in mitochondria.
    Kurosawa K; Shibata H; Hayashi N; Sato N; Kamada T; Tagawa K
    J Biochem; 1990 Jul; 108(1):9-16. PubMed ID: 2229015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different mechanisms of formation of glutathione-protein mixed disulfides of diamide and tert-butyl hydroperoxide in rat blood.
    Di Simplicio P; Lupis E; Rossi R
    Biochim Biophys Acta; 1996 Mar; 1289(2):252-60. PubMed ID: 8600982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen toxicity: loss of lung macrophage function without metabolite depletion.
    Sutherland MW; Glass M; Nelson J; Lyen Y; Forman HJ
    J Free Radic Biol Med; 1985; 1(3):209-14. PubMed ID: 3013977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of protein S-thiolation (protein mixed-disulfide formation) in heart cells treated with t-butyl hydroperoxide or diamide.
    Collison MW; Beidler D; Grimm LM; Thomas JA
    Biochim Biophys Acta; 1986 Jan; 885(1):58-67. PubMed ID: 3942795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retention of oxidized glutathione by isolated rat liver mitochondria during hydroperoxide treatment.
    Olafsdottir K; Reed DJ
    Biochim Biophys Acta; 1988 Mar; 964(3):377-82. PubMed ID: 3349102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sublethal oxidant stress induces a reversible increase in intracellular calcium dependent on NAD(P)H oxidation in rat alveolar macrophages.
    Livingston FR; Lui EM; Loeb GA; Forman HJ
    Arch Biochem Biophys; 1992 Nov; 299(1):83-91. PubMed ID: 1444455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose regulation of hydroperoxide metabolism in rat intestinal cells. Stimulation of reduced nicotinamide adenine dinucleotide phosphate supply.
    Aw TY; Rhoads CA
    J Clin Invest; 1994 Dec; 94(6):2426-34. PubMed ID: 7989600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutathione oxidation and activation of pentose phosphate cycle during hydroperoxide metabolism. A comparison of livers from fed and fasted rats.
    Brigelius R
    Hoppe Seylers Z Physiol Chem; 1983 Aug; 364(8):989-96. PubMed ID: 6629334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decreased flux through pyruvate dehydrogenase by thiol oxidation during t-butyl hydroperoxide metabolism in perfused rat liver.
    Crane D; Häussinger D; Graf P; Sies H
    Hoppe Seylers Z Physiol Chem; 1983 Aug; 364(8):977-87. PubMed ID: 6629333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.