These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 30022985)
1. Assessing European Wheat Sensitivities to Downie RC; Bouvet L; Furuki E; Gosman N; Gardner KA; Mackay IJ; Campos Mantello C; Mellers G; Phan HTT; Rose GA; Tan KC; Oliver RP; Cockram J Front Plant Sci; 2018; 9():881. PubMed ID: 30022985 [No Abstract] [Full Text] [Related]
2. Fine-Mapping the Wheat Snn1 Locus Conferring Sensitivity to the Parastagonospora nodorum Necrotrophic Effector SnTox1 Using an Eight Founder Multiparent Advanced Generation Inter-Cross Population. Cockram J; Scuderi A; Barber T; Furuki E; Gardner KA; Gosman N; Kowalczyk R; Phan HP; Rose GA; Tan KC; Oliver RP; Mackay IJ G3 (Bethesda); 2015 Sep; 5(11):2257-66. PubMed ID: 26416667 [TBL] [Abstract][Full Text] [Related]
3. Marker development, saturation mapping, and high-resolution mapping of the Septoria nodorum blotch susceptibility gene Snn3-B1 in wheat. Shi G; Zhang Z; Friesen TL; Bansal U; Cloutier S; Wicker T; Rasmussen JB; Faris JD Mol Genet Genomics; 2016 Feb; 291(1):107-19. PubMed ID: 26187026 [TBL] [Abstract][Full Text] [Related]
4. Differential effector gene expression underpins epistasis in a plant fungal disease. Phan HT; Rybak K; Furuki E; Breen S; Solomon PS; Oliver RP; Tan KC Plant J; 2016 Aug; 87(4):343-54. PubMed ID: 27133896 [TBL] [Abstract][Full Text] [Related]
5. Validation of Genome-Wide Association Studies as a Tool to Identify Virulence Factors in Parastagonospora nodorum. Gao Y; Liu Z; Faris JD; Richards J; Brueggeman RS; Li X; Oliver RP; McDonald BA; Friesen TL Phytopathology; 2016 Oct; 106(10):1177-1185. PubMed ID: 27442533 [TBL] [Abstract][Full Text] [Related]
6. GWAS analysis reveals distinct pathogenicity profiles of Australian Parastagonospora nodorum isolates and identification of marker-trait-associations to septoria nodorum blotch. Phan HTT; Furuki E; Hunziker L; Rybak K; Tan KC Sci Rep; 2021 May; 11(1):10085. PubMed ID: 33980869 [TBL] [Abstract][Full Text] [Related]
7. Two putatively homoeologous wheat genes mediate recognition of SnTox3 to confer effector-triggered susceptibility to Stagonospora nodorum. Zhang Z; Friesen TL; Xu SS; Shi G; Liu Z; Rasmussen JB; Faris JD Plant J; 2011 Jan; 65(1):27-38. PubMed ID: 21175887 [TBL] [Abstract][Full Text] [Related]
8. Mapping of SnTox3-Snn3 as a major determinant of field susceptibility to Septoria nodorum leaf blotch in the SHA3/CBRD × Naxos population. Ruud AK; Windju S; Belova T; Friesen TL; Lillemo M Theor Appl Genet; 2017 Jul; 130(7):1361-1374. PubMed ID: 28365817 [TBL] [Abstract][Full Text] [Related]
9. Identification and Characterization of the SnTox6-Snn6 Interaction in the Parastagonospora nodorum-Wheat Pathosystem. Gao Y; Faris JD; Liu Z; Kim YM; Syme RA; Oliver RP; Xu SS; Friesen TL Mol Plant Microbe Interact; 2015 May; 28(5):615-25. PubMed ID: 25608181 [TBL] [Abstract][Full Text] [Related]
10. Genetics of Variable Disease Expression Conferred by Inverse Gene-For-Gene Interactions in the Wheat- Peters Haugrud AR; Zhang Z; Richards JK; Friesen TL; Faris JD Plant Physiol; 2019 May; 180(1):420-434. PubMed ID: 30858234 [TBL] [Abstract][Full Text] [Related]
11. Novel sources of resistance to Septoria nodorum blotch in the Vavilov wheat collection identified by genome-wide association studies. Phan HTT; Rybak K; Bertazzoni S; Furuki E; Dinglasan E; Hickey LT; Oliver RP; Tan KC Theor Appl Genet; 2018 Jun; 131(6):1223-1238. PubMed ID: 29470621 [TBL] [Abstract][Full Text] [Related]
12. Genetic mapping using a wheat multi-founder population reveals a locus on chromosome 2A controlling resistance to both leaf and glume blotch caused by the necrotrophic fungal pathogen Parastagonospora nodorum. Lin M; Corsi B; Ficke A; Tan KC; Cockram J; Lillemo M Theor Appl Genet; 2020 Mar; 133(3):785-808. PubMed ID: 31996971 [TBL] [Abstract][Full Text] [Related]
13. Genome-wide association mapping of resistance to the foliar diseases septoria nodorum blotch and tan spot in a global winter wheat collection. Peters Haugrud AR; Shi G; Seneviratne S; Running KLD; Zhang Z; Singh G; Szabo-Hever A; Acharya K; Friesen TL; Liu Z; Faris JD Mol Breed; 2023 Jul; 43(7):54. PubMed ID: 37337566 [TBL] [Abstract][Full Text] [Related]
14. The crystal structure of SnTox3 from the necrotrophic fungus Parastagonospora nodorum reveals a unique effector fold and provides insight into Snn3 recognition and pro-domain protease processing of fungal effectors. Outram MA; Sung YC; Yu D; Dagvadorj B; Rima SA; Jones DA; Ericsson DJ; Sperschneider J; Solomon PS; Kobe B; Williams SJ New Phytol; 2021 Sep; 231(6):2282-2296. PubMed ID: 34053091 [TBL] [Abstract][Full Text] [Related]
15. A protein kinase-major sperm protein gene hijacked by a necrotrophic fungal pathogen triggers disease susceptibility in wheat. Zhang Z; Running KLD; Seneviratne S; Peters Haugrud AR; Szabo-Hever A; Shi G; Brueggeman R; Xu SS; Friesen TL; Faris JD Plant J; 2021 May; 106(3):720-732. PubMed ID: 33576059 [TBL] [Abstract][Full Text] [Related]
17. Reactive Oxygen Species in Host Plant Are Required for an Early Defense Response against Attack of Veselova S; Nuzhnaya T; Burkhanova G; Rumyantsev S; Maksimov I Plants (Basel); 2021 Jul; 10(8):. PubMed ID: 34451631 [TBL] [Abstract][Full Text] [Related]
18. Genome-Wide Association Mapping of Resistance to Septoria Nodorum Leaf Blotch in a Nordic Spring Wheat Collection. Ruud AK; Dieseth JA; Ficke A; Furuki E; Phan HTT; Oliver RP; Tan KC; Lillemo M Plant Genome; 2019 Nov; 12(3):1-15. PubMed ID: 33016591 [TBL] [Abstract][Full Text] [Related]