These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30023140)

  • 1. SECAPR-a bioinformatics pipeline for the rapid and user-friendly processing of targeted enriched Illumina sequences, from raw reads to alignments.
    Andermann T; Cano Á; Zizka A; Bacon C; Antonelli A
    PeerJ; 2018; 6():e5175. PubMed ID: 30023140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A bioinformatic platform to integrate target capture and whole genome sequences of various read depths for phylogenomics.
    G Ribeiro P; Torres Jiménez MF; Andermann T; Antonelli A; Bacon CD; Matos-Maraví P
    Mol Ecol; 2021 Dec; 30(23):6021-6035. PubMed ID: 34674330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ClinQC: a tool for quality control and cleaning of Sanger and NGS data in clinical research.
    Pandey RV; Pabinger S; Kriegner A; Weinhäusel A
    BMC Bioinformatics; 2016 Feb; 17():56. PubMed ID: 26830926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NGS-QCbox and Raspberry for Parallel, Automated and Rapid Quality Control Analysis of Large-Scale Next Generation Sequencing (Illumina) Data.
    Katta MA; Khan AW; Doddamani D; Thudi M; Varshney RK
    PLoS One; 2015; 10(10):e0139868. PubMed ID: 26460497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Software for pre-processing Illumina next-generation sequencing short read sequences.
    Chen C; Khaleel SS; Huang H; Wu CH
    Source Code Biol Med; 2014; 9():8. PubMed ID: 24955109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grape RNA-Seq analysis pipeline environment.
    Knowles DG; Röder M; Merkel A; Guigó R
    Bioinformatics; 2013 Mar; 29(5):614-21. PubMed ID: 23329413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. cPlot: Contig-Plotting Visualization for the Analysis of Short-Read Nucleotide Sequence Alignments.
    Ji M; Kan Y; Kim D; Jung J; Yi G
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resolving the phylogeny of Thladiantha (Cucurbitaceae) with three different target capture pipelines.
    Raza M; Ortiz EM; Schwung L; Shigita G; Schaefer H
    BMC Ecol Evol; 2023 Dec; 23(1):75. PubMed ID: 38087247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2FAST2Q: a general-purpose sequence search and counting program for FASTQ files.
    Bravo AM; Typas A; Veening JW
    PeerJ; 2022; 10():e14041. PubMed ID: 36312750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allele Phasing Greatly Improves the Phylogenetic Utility of Ultraconserved Elements.
    Andermann T; Fernandes AM; Olsson U; Töpel M; Pfeil B; Oxelman B; Aleixo A; Faircloth BC; Antonelli A
    Syst Biol; 2019 Jan; 68(1):32-46. PubMed ID: 29771371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. REVERSE: a user-friendly web server for analyzing next-generation sequencing data from in vitro selection/evolution experiments.
    Weiss Z; DasGupta S
    Nucleic Acids Res; 2022 Jul; 50(W1):W639-W650. PubMed ID: 35699225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QC-Chain: fast and holistic quality control method for next-generation sequencing data.
    Zhou Q; Su X; Wang A; Xu J; Ning K
    PLoS One; 2013; 8(4):e60234. PubMed ID: 23565205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CLOTU: an online pipeline for processing and clustering of 454 amplicon reads into OTUs followed by taxonomic annotation.
    Kumar S; Carlsen T; Mevik BH; Enger P; Blaalid R; Shalchian-Tabrizi K; Kauserud H
    BMC Bioinformatics; 2011 May; 12():182. PubMed ID: 21599929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comparison of Bioinformatics Pipelines for Enrichment Illumina Next Generation Sequencing Systems in Detecting SARS-CoV-2 Virus Strains.
    Afiahayati ; Bernard S; Gunadi ; Wibawa H; Hakim MS; Marcellus ; Parikesit AA; Dewa CK; Sakakibara Y
    Genes (Basel); 2022 Jul; 13(8):. PubMed ID: 35893066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GeCKO: user-friendly workflows for genotyping complex genomes using target enrichment capture. A use case on the large tetraploid durum wheat genome.
    Ardisson M; Girodolle J; De Mita S; Roumet P; Ranwez V
    Plant Methods; 2024 Jul; 20(1):103. PubMed ID: 39003455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assexon: Assembling Exon Using Gene Capture Data.
    Yuan H; Atta C; Tornabene L; Li C
    Evol Bioinform Online; 2019; 15():1176934319874792. PubMed ID: 31523128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SeqAssist: a novel toolkit for preliminary analysis of next-generation sequencing data.
    Peng Y; Maxwell AS; Barker ND; Laird JG; Kennedy AJ; Wang N; Zhang C; Gong P
    BMC Bioinformatics; 2014; 15 Suppl 11(Suppl 11):S10. PubMed ID: 25349885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CANGS DB: a stand-alone web-based database tool for processing, managing and analyzing 454 data in biodiversity studies.
    Pandey RV; Nolte V; Boenigk J; Schlötterer C
    BMC Res Notes; 2011 Jun; 4():227. PubMed ID: 21718534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SHI7 Is a Self-Learning Pipeline for Multipurpose Short-Read DNA Quality Control.
    Al-Ghalith GA; Hillmann B; Ang K; Shields-Cutler R; Knights D
    mSystems; 2018; 3(3):. PubMed ID: 29719872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HybPiper: Extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment.
    Johnson MG; Gardner EM; Liu Y; Medina R; Goffinet B; Shaw AJ; Zerega NJ; Wickett NJ
    Appl Plant Sci; 2016 Jul; 4(7):. PubMed ID: 27437175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.