These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 3002317)

  • 41. NMDA receptor antagonism with MK-801 impairs consolidation and reconsolidation of passive avoidance conditioning in adolescent rats: evidence for a state dependent reconsolidation effect.
    Flint RW; Noble LJ; Ulmen AR
    Neurobiol Learn Mem; 2013 Mar; 101():114-9. PubMed ID: 23391691
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Opioid receptors regulate the extinction of Pavlovian fear conditioning.
    McNally GP; Westbrook RF
    Behav Neurosci; 2003 Dec; 117(6):1292-301. PubMed ID: 14674848
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Calcium channel antagonists enhance retention of passive avoidance and maze learning in mice.
    Quartermain D; deSoria VG; Kwan A
    Neurobiol Learn Mem; 2001 Jan; 75(1):77-90. PubMed ID: 11124048
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Task-specificity of the blocking action of puromycin on retention in goldfish.
    Satake N
    Physiol Behav; 1978 Dec; 21(6):855-8. PubMed ID: 552073
    [No Abstract]   [Full Text] [Related]  

  • 45. The impairment of retention induced by beta-endorphin in mice may be mediated by a reduction of central cholinergic activity.
    Introini IB; Baratti CM
    Behav Neural Biol; 1984 Jul; 41(2):152-63. PubMed ID: 6148931
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Substance P enhancement of passive and active avoidance conditioning in mice.
    Schlesinger K; Lipsitz DU; Peck PL; Pelleymounter MA; Stewart JM; Chase TN
    Pharmacol Biochem Behav; 1983 Oct; 19(4):655-61. PubMed ID: 6196793
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Differential effects of bupropion on acquisition and performance of an active avoidance task in male mice.
    Gómez MC; Redolat R; Carrasco MC
    Behav Processes; 2016 Mar; 124():32-7. PubMed ID: 26688488
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Long-term memory facilitation in rats by posttraining epinephrine.
    Costa-Miserachs D; Portell-Cortés I; Aldavert-Vera L; Torras-García M; Morgado-Bernal I
    Behav Neurosci; 1994 Jun; 108(3):469-74. PubMed ID: 7917040
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of vasopressin on the brain lipid metabolism during learning and retention of conditioned avoidance behaviour.
    Patchev V; Dishkelov A
    Acta Physiol Pharmacol Bulg; 1987; 13(3):51-5. PubMed ID: 3439475
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Deltorphin, a naturally occurring peptide with high selectivity for delta opioid receptors, improves memory consolidation in two inbred strains of mice.
    Pavone F; Populin R; Castellano C; Kreil G; Melchiorri P
    Peptides; 1990; 11(3):591-4. PubMed ID: 2166280
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Analysis of the avoidance learning deficit induced by the serotonin releasing compound p-chloroamphetamine.
    Ogren SO
    Brain Res Bull; 1986 May; 16(5):645-60. PubMed ID: 3742248
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interactions of the dorsal hippocampus, medial prefrontal cortex and nucleus accumbens in formation of fear memory: difference in inhibitory avoidance learning and contextual fear conditioning.
    Yang FC; Liang KC
    Neurobiol Learn Mem; 2014 Jul; 112():186-94. PubMed ID: 23891992
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tyr-D-Arg-Phe-beta-Ala-NH2, a novel dermorphin analog, impairs memory consolidation in mice.
    Ukai M; Mori K; Hashimoto S; Kobayashi T; Sasaki Y; Kameyama T
    Eur J Pharmacol; 1993 Aug; 239(1-3):237-40. PubMed ID: 7901029
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inhibitors of cAMP-dependent protein kinase impair long-term memory formation in day-old chicks.
    Zhao WQ; Polya GM; Wang BH; Gibbs ME; Sedman GL; Ng KT
    Neurobiol Learn Mem; 1995 Sep; 64(2):106-18. PubMed ID: 7582818
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Involvement of hippocampal NMDA receptors in retention of shuttle avoidance conditioning in rats.
    Roesler R; Kuyven CR; Kruel AV; Quevedo J; Ferreira MB
    Braz J Med Biol Res; 1998 Dec; 31(12):1601-4. PubMed ID: 9951558
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stria terminalis lesions attenuate the effects of posttraining naloxone and beta-endorphin on retention.
    McGaugh JL; Introini-Collison IB; Juler RG; Izquierdo I
    Behav Neurosci; 1986 Dec; 100(6):839-44. PubMed ID: 2949763
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design and synthesis of naltrexone-derived affinity labels with nonequilibrium opioid agonist and antagonist activities. Evidence for the existence of different mu receptor subtypes in different tissues.
    Sayre LM; Larson DL; Takemori AE; Portoghese PS
    J Med Chem; 1984 Oct; 27(10):1325-35. PubMed ID: 6090663
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Distinct mechanisms underlying memory modulation after the first and the second session of two avoidance tasks.
    Netto CA; Maltchik M
    Behav Neural Biol; 1990 Jan; 53(1):29-38. PubMed ID: 2302139
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nicotine protects against mu-opioid receptor antagonism by beta-funaltrexamine: evidence for nicotine-induced release of endogenous opioids in brain.
    Davenport KE; Houdi AA; Van Loon GR
    Neurosci Lett; 1990 May; 113(1):40-6. PubMed ID: 2164174
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of ethanol and naltrexone on free-operant avoidance behavior in rats.
    Galizio M; Smaltz SC; Spencer BA
    Pharmacol Biochem Behav; 1984 Sep; 21(3):423-9. PubMed ID: 6093153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.