These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 3002347)

  • 1. Sarcolemmal Na+-Ca2+ exchange during the development of genetically determined cardiomyopathy.
    Makino N; Jasmin G; Beamish RE; Dhalla NS
    Biochem Biophys Res Commun; 1985 Dec; 133(2):491-7. PubMed ID: 3002347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sarcolemmal Na+-Ca2+ exchange and Ca2+-pump activities in cardiomyopathies due to intracellular Ca2+-overload.
    Dhalla NS; Panagia V; Makino N; Beamish RE
    Mol Cell Biochem; 1988; 82(1-2):75-9. PubMed ID: 2972915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sarcolemmal alterations during the development of genetically determined cardiomyopathy.
    Panagia V; Singh JN; Anand-Srivastava MB; Pierce GN; Jasmin G; Dhalla NS
    Cardiovasc Res; 1984 Sep; 18(9):567-72. PubMed ID: 6147191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alterations of sarcolemmal Na+-Ca2+ exchange in catecholamine-induced cardiomyopathy.
    Makino N; Dhruvarajan R; Elimban V; Beamish RE; Dhalla NS
    Can J Cardiol; 1985; 1(3):225-32. PubMed ID: 2413973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of oxidative stress in catecholamine-induced changes in cardiac sarcolemmal Ca2+ transport.
    Tappia PS; Hata T; Hozaima L; Sandhu MS; Panagia V; Dhalla NS
    Arch Biochem Biophys; 2001 Mar; 387(1):85-92. PubMed ID: 11368187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sarcolemmal Ca2+ transport activities in cardiac hypertrophy caused by pressure overload.
    Nakanishi H; Makino N; Hata T; Matsui H; Yano K; Yanaga T
    Am J Physiol; 1989 Aug; 257(2 Pt 2):H349-56. PubMed ID: 2548404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sarcolemmal Ca2+ transport in streptozotocin-induced diabetic cardiomyopathy in rats.
    Makino N; Dhalla KS; Elimban V; Dhalla NS
    Am J Physiol; 1987 Aug; 253(2 Pt 1):E202-7. PubMed ID: 2956889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sarcolemmal phospholipid N-methylation in genetically determined hamster cardiomyopathy.
    Okumura K; Panagia V; Jasmin G; Dhalla NS
    Biochem Biophys Res Commun; 1987 Feb; 143(1):31-7. PubMed ID: 3827924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of heart sarcolemmal enzyme activities in normal and cardiomyopathic (UM-X7.1) hamsters.
    Dhalla NS; Singh JN; Bajusz E; Jasmin G
    Clin Sci Mol Med; 1976 Sep; 51(3):233-42. PubMed ID: 134861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiac sarcolemmal Na(+)-Ca2+ exchange and Na(+)-K+ ATPase activities and gene expression in alloxan-induced diabetes in rats.
    Golfman L; Dixon IM; Takeda N; Lukas A; Dakshinamurti K; Dhalla NS
    Mol Cell Biochem; 1998 Nov; 188(1-2):91-101. PubMed ID: 9823015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP-dependent Na+ transport in cardiac sarcolemmal vesicles.
    Philipson KD; Nishimoto AY
    Biochim Biophys Acta; 1983 Aug; 733(1):133-41. PubMed ID: 6309224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defects in sarcolemmal Ca2+ transport in hearts due to induction of calcium paradox.
    Makino N; Panagia V; Gupta MP; Dhalla NS
    Circ Res; 1988 Aug; 63(2):313-21. PubMed ID: 2456163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of frog heart sarcolemma possessing (Ca2+ + Mg2+)-ATPase and Ca2+ pump activities.
    Morcos NC
    Biochim Biophys Acta; 1981 Apr; 643(1):55-62. PubMed ID: 6113007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulation of Na+-Ca2+ exchange in cardiac sarcolemmal vesicles by proteinase pretreatment.
    Philipson KD; Nishimoto AY
    Am J Physiol; 1982 Sep; 243(3):C191-5. PubMed ID: 6287861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of Na+-Ca2+ exchange in cardiac sarcolemmal vesicles by Ca2+ antagonists.
    Hata T; Makino N; Nakanishi H; Yanaga T
    Mol Cell Biochem; 1988 Nov; 84(1):65-76. PubMed ID: 2852769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of sodium-calcium exchange by cholesterol incorporation into isolated cardiac sarcolemmal vesicles.
    Kutryk MJ; Pierce GN
    J Biol Chem; 1988 Sep; 263(26):13167-72. PubMed ID: 2843512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diabetic cardiomyopathy in rats: biochemical mechanisms of increased tolerance to calcium overload.
    Ziegelhöffer A; Ravingerová T; Styk J; Tribulová N; Volkovová K; Seboková J; Breier A
    Diabetes Res Clin Pract; 1996 Jul; 31 Suppl():S93-103. PubMed ID: 8864647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of phosphatidylinositol in cardiac sarcolemmal membrane sodium-calcium exchange.
    Pierce GN; Panagia V
    J Biol Chem; 1989 Sep; 264(26):15344-50. PubMed ID: 2549059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sarcolemmal calcium kinetics in the neonatal heart.
    Meno H; Jarmakani JM; Philipson KD
    J Mol Cell Cardiol; 1988 Jul; 20(7):585-91. PubMed ID: 2845105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of heart sarcolemmal Na+/K+-ATPase activity during development of the calcium paradox.
    Alto LE; Elimban V; Lukas A; Dhalla NS
    Mol Cell Biochem; 2000 Apr; 207(1-2):87-94. PubMed ID: 10888231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.