These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 30023478)

  • 1. Predicting Binding Affinities for GPCR Ligands Using Free-Energy Perturbation.
    Lenselink EB; Louvel J; Forti AF; van Veldhoven JPD; de Vries H; Mulder-Krieger T; McRobb FM; Negri A; Goose J; Abel R; van Vlijmen HWT; Wang L; Harder E; Sherman W; IJzerman AP; Beuming T
    ACS Omega; 2016 Aug; 1(2):293-304. PubMed ID: 30023478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate Binding Free Energy Predictions in Fragment Optimization.
    Steinbrecher TB; Dahlgren M; Cappel D; Lin T; Wang L; Krilov G; Abel R; Friesner R; Sherman W
    J Chem Inf Model; 2015 Nov; 55(11):2411-20. PubMed ID: 26457994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using physics-based pose predictions and free energy perturbation calculations to predict binding poses and relative binding affinities for FXR ligands in the D3R Grand Challenge 2.
    Athanasiou C; Vasilakaki S; Dellis D; Cournia Z
    J Comput Aided Mol Des; 2018 Jan; 32(1):21-44. PubMed ID: 29119352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fragment optimization for GPCRs by molecular dynamics free energy calculations: Probing druggable subpockets of the A
    Matricon P; Ranganathan A; Warnick E; Gao ZG; Rudling A; Lambertucci C; Marucci G; Ezzati A; Jaiteh M; Dal Ben D; Jacobson KA; Carlsson J
    Sci Rep; 2017 Jul; 7(1):6398. PubMed ID: 28743961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative Binding Free Energy Calculations Applied to Protein Homology Models.
    Cappel D; Hall ML; Lenselink EB; Beuming T; Qi J; Bradner J; Sherman W
    J Chem Inf Model; 2016 Dec; 56(12):2388-2400. PubMed ID: 28024402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate Prediction of GPCR Ligand Binding Affinity with Free Energy Perturbation.
    Deflorian F; Perez-Benito L; Lenselink EB; Congreve M; van Vlijmen HWT; Mason JS; Graaf C; Tresadern G
    J Chem Inf Model; 2020 Nov; 60(11):5563-5579. PubMed ID: 32539374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the performance of MM/PBSA for binding affinity prediction using class A GPCR crystal structures.
    Yau MQ; Emtage AL; Chan NJY; Doughty SW; Loo JSE
    J Comput Aided Mol Des; 2019 May; 33(5):487-496. PubMed ID: 30989574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hit-to-lead and lead optimization binding free energy calculations for G protein-coupled receptors.
    Wan S; Potterton A; Husseini FS; Wright DW; Heifetz A; Malawski M; Townsend-Nicholson A; Coveney PV
    Interface Focus; 2020 Dec; 10(6):20190128. PubMed ID: 33178414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advancing Drug Discovery through Enhanced Free Energy Calculations.
    Abel R; Wang L; Harder ED; Berne BJ; Friesner RA
    Acc Chem Res; 2017 Jul; 50(7):1625-1632. PubMed ID: 28677954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CHARMM-GUI Free Energy Calculator for Absolute and Relative Ligand Solvation and Binding Free Energy Simulations.
    Kim S; Oshima H; Zhang H; Kern NR; Re S; Lee J; Roux B; Sugita Y; Jiang W; Im W
    J Chem Theory Comput; 2020 Nov; 16(11):7207-7218. PubMed ID: 33112150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations.
    Kaus JW; Harder E; Lin T; Abel R; McCammon JA; Wang L
    J Chem Theory Comput; 2015 Jun; 11(6):2670-9. PubMed ID: 26085821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large scale free energy calculations for blind predictions of protein-ligand binding: the D3R Grand Challenge 2015.
    Deng N; Flynn WF; Xia J; Vijayan RS; Zhang B; He P; Mentes A; Gallicchio E; Levy RM
    J Comput Aided Mol Des; 2016 Sep; 30(9):743-751. PubMed ID: 27562018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QligFEP: an automated workflow for small molecule free energy calculations in Q.
    Jespers W; Esguerra M; Åqvist J; Gutiérrez-de-Terán H
    J Cheminform; 2019 Apr; 11(1):26. PubMed ID: 30941533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations.
    Cournia Z; Allen B; Sherman W
    J Chem Inf Model; 2017 Dec; 57(12):2911-2937. PubMed ID: 29243483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In search of novel ligands using a structure-based approach: a case study on the adenosine A
    Lenselink EB; Beuming T; van Veen C; Massink A; Sherman W; van Vlijmen HW; IJzerman AP
    J Comput Aided Mol Des; 2016 Oct; 30(10):863-874. PubMed ID: 27629350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relative Binding Affinity Prediction of Charge-Changing Sequence Mutations with FEP in Protein-Protein Interfaces.
    Clark AJ; Negron C; Hauser K; Sun M; Wang L; Abel R; Friesner RA
    J Mol Biol; 2019 Mar; 431(7):1481-1493. PubMed ID: 30776430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-Based Design of Potent and Selective Ligands at the Four Adenosine Receptors.
    Jespers W; Oliveira A; Prieto-Díaz R; Majellaro M; Åqvist J; Sotelo E; Gutiérrez-de-Terán H
    Molecules; 2017 Nov; 22(11):. PubMed ID: 29125553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate Calculation of Relative Binding Free Energies between Ligands with Different Net Charges.
    Chen W; Deng Y; Russell E; Wu Y; Abel R; Wang L
    J Chem Theory Comput; 2018 Dec; 14(12):6346-6358. PubMed ID: 30375870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative energies of binding for antibody-carbohydrate-antigen complexes computed from free-energy simulations.
    Pathiaseril A; Woods RJ
    J Am Chem Soc; 2000 Jan; 122(2):331-8. PubMed ID: 17211491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in binding free energies calculations: QM/MM-based free energy perturbation method for drug design.
    Rathore RS; Sumakanth M; Reddy MS; Reddanna P; Rao AA; Erion MD; Reddy MR
    Curr Pharm Des; 2013; 19(26):4674-86. PubMed ID: 23260025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.