BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30023581)

  • 1. Sensing Chemical Warfare Agent Simulants via Photonic Crystals of the
    Kittle JD; Fisher BP; Esparza AJ; Morey AM; Iacono ST
    ACS Omega; 2017 Nov; 2(11):8301-8307. PubMed ID: 30023581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vapor Selectivity of a Natural Photonic Crystal to Binary and Tertiary Mixtures Containing Chemical Warfare Agent Simulants.
    Kittle J; Fisher B; Kunselman C; Morey A; Abel A
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31881779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants.
    Sayago I; Matatagui D; Fernández MJ; Fontecha JL; Jurewicz I; Garriga R; Muñoz E
    Talanta; 2016 Feb; 148():393-400. PubMed ID: 26653465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vapor Sorption-Desorption Phenomena of HD and GB Simulants from Polyurethane Thin Films on Aluminum Oxide via a Quartz Crystal Microbalance.
    Kittle JD; Grasdal EN; Kim SM; Levin NR; Davis PA; Kittle AL; Kittle IJ; Mulcahy JA; Keith BR
    ACS Omega; 2022 Jul; 7(26):22735-22742. PubMed ID: 35811928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using cheminformatics to find simulants for chemical warfare agents.
    Lavoie J; Srinivasan S; Nagarajan R
    J Hazard Mater; 2011 Oct; 194():85-91. PubMed ID: 21872989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Four-Channel Monitoring System with Surface Acoustic Wave Sensors for Detection of Chemical Warfare Agents.
    Kim J; Kim E; Kim J; Kim JH; Ha S; Song C; Jang WJ; Yun J
    J Nanosci Nanotechnol; 2020 Nov; 20(11):7151-7157. PubMed ID: 32604574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman Spectroscopic Detection for Simulants of Chemical Warfare Agents Using a Spatial Heterodyne Spectrometer.
    Hu G; Xiong W; Luo H; Shi H; Li Z; Shen J; Fang X; Xu B; Zhang J
    Appl Spectrosc; 2018 Jan; 72(1):151-158. PubMed ID: 28627233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acid is a potential interferent in fluorescent sensing of chemical warfare agent vapors.
    Fan S; Dennison GH; FitzGerald N; Burn PL; Gentle IR; Shaw PE
    Commun Chem; 2021 Mar; 4(1):45. PubMed ID: 36697578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensing Nitrogen Mustard Gas Simulant at the ppb Scale via Selective Dual-Site Activation at Au/Mn
    Bigiani L; Zappa D; Barreca D; Gasparotto A; Sada C; Tabacchi G; Fois E; Comini E; Maccato C
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23692-23700. PubMed ID: 31252461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insects as Chemical Sensors: Detection of Chemical Warfare Agent Simulants and Hydrolysis Products in the Blow Fly Using LC-MS/MS.
    Dowling SN; Skaggs CL; Owings CG; Moctar K; Picard CJ; Manicke NE
    Environ Sci Technol; 2022 Mar; 56(6):3535-3543. PubMed ID: 35188758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using metal complex ion-molecule reactions in a miniature rectilinear ion trap mass spectrometer to detect chemical warfare agents.
    Graichen AM; Vachet RW
    J Am Soc Mass Spectrom; 2013 Jun; 24(6):917-25. PubMed ID: 23532782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supramolecular recognition of a CWA simulant by metal-salen complexes: the first multi-topic approach.
    Puglisi R; Pappalardo A; Gulino A; Trusso Sfrazzetto G
    Chem Commun (Camb); 2018 Oct; 54(79):11156-11159. PubMed ID: 30226513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facility monitoring of chemical warfare agent simulants in air using an automated, field-deployable, miniature mass spectrometer.
    Smith JN; Noll RJ; Cooks RG
    Rapid Commun Mass Spectrom; 2011 May; 25(10):1437-44. PubMed ID: 21504010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time trace detection and identification of chemical warfare agent simulants using recent advances in proton transfer reaction time-of-flight mass spectrometry.
    Petersson F; Sulzer P; Mayhew CA; Watts P; Jordan A; Märk L; Märk TD
    Rapid Commun Mass Spectrom; 2009 Dec; 23(23):3875-80. PubMed ID: 19902419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Assembled MOF-on-MOF Nanofabrics for Synergistic Detoxification of Chemical Warfare Agent Simulants.
    Xu R; Wu T; Jiao X; Chen D; Li C
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30360-30371. PubMed ID: 37311009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional photonic crystal optical gas sensor for trace detection and ultrafast response of chemical warfare agent in atmospheric humidity.
    Wang Y; Wang Z; Gao Y; Yan J; Chen Y; Yang L
    Talanta; 2024 Jun; 277():126383. PubMed ID: 38852345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid,
    Brown HM; McDaniel TJ; Doppalapudi KR; Mulligan CC; Fedick PW
    Analyst; 2021 May; 146(10):3127-3136. PubMed ID: 33999086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boosted ability of ZIF-8 for early-stage adsorption and degradation of chemical warfare agent simulants.
    Oh S; Lee S; Lee G; Oh M
    Nanoscale Adv; 2023 Nov; 5(23):6449-6457. PubMed ID: 38024321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secondary ionization of chemical warfare agent simulants: atmospheric pressure ion mobility time-of-flight mass spectrometry.
    Steiner WE; Clowers BH; Haigh PE; Hill HH
    Anal Chem; 2003 Nov; 75(22):6068-76. PubMed ID: 14615983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast and Selective Detection of Trace Chemical Warfare Agents Enabled by an ESIPT-Based Fluorescent Film Sensor.
    Liu K; Qin M; Shi Q; Wang G; Zhang J; Ding N; Xi H; Liu T; Kong J; Fang Y
    Anal Chem; 2022 Aug; 94(32):11151-11158. PubMed ID: 35921590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.