These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 3002370)

  • 1. Calmodulin regulation of cholinergic muscarinic receptor: effects of calcium and phosphorylating states.
    Ho AK; Wang JH
    Biochem Biophys Res Commun; 1985 Dec; 133(3):1193-200. PubMed ID: 3002370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The loss of muscarinic acetylcholine receptors in synaptic membranes under phosphorylating conditions is dependent on calmodulin.
    Burgoyne RD
    FEBS Lett; 1981 May; 127(1):144-8. PubMed ID: 6265278
    [No Abstract]   [Full Text] [Related]  

  • 3. Regulation of the muscarinic acetylcholine receptor: effects of phosphorylating conditions on agonist and antagonist binding.
    Burgoyne RD
    J Neurochem; 1983 Feb; 40(2):324-31. PubMed ID: 6296316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation of brain muscarinic receptor: evidence of receptor regulation.
    Ho AK; Ling QL; Duffield R; Lam PH; Wang JH
    Biochem Biophys Res Commun; 1987 Feb; 142(3):911-8. PubMed ID: 3030306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological significance of phosphorylation and myristoylation in the regulation of cardiac muscle proteins.
    Raju RV; Kakkar R; Radhi JM; Sharma RK
    Mol Cell Biochem; 1997 Nov; 176(1-2):135-43. PubMed ID: 9406155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oscillatory muscarinic acetylcholine responses of Xenopus oocytes are desensitized by protein kinase C and sensitized by protein phosphatase 2B.
    Sakuta H; Sekiguchi M; Okamoto K; Sakai Y
    Eur J Pharmacol; 1991 Dec; 208(4):297-305. PubMed ID: 1667757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of EGTA-washed synaptosomal membrane with emphasis on its calmodulin-binding proteins. Demonstration of possible reconstitution with added calcium/calmodulin.
    Natsukari N; Uezato T; Ohta H; Fujita M
    Biochim Biophys Acta; 1992 Jan; 1133(2):193-205. PubMed ID: 1310053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of sulfhydryl agents, trifluoperazine, phosphatase inhibitors and tryptic proteolysis on calcineurin isolated from bovine cerebral cortex.
    Gupta RC; Khandelwal RL; Sulakhe PV
    Mol Cell Biochem; 1990 Sep; 97(1):43-52. PubMed ID: 2174099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of synaptic membrane glycoproteins: the effects of Ca2+ and calmodulin.
    Kearney KA; Gurd JW
    J Neurochem; 1986 Jun; 46(6):1683-91. PubMed ID: 3009715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of acetylcholine release: possible involvement of presynaptic muscarinic receptors in regulation of acetylcholine release and protein phosphorylation.
    Michaelson DM; Avissar S; Kloog Y; Sokolovsky M
    Proc Natl Acad Sci U S A; 1979 Dec; 76(12):6336-40. PubMed ID: 293724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscarinic receptor-mediated translocation of calmodulin in SK-N-SH human neuroblastoma cells.
    Mangels LA; Gnegy ME
    Mol Pharmacol; 1990 Jun; 37(6):820-6. PubMed ID: 2359403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissociation of RalA from synaptic membranes by Ca2+/calmodulin.
    Park JB; Lee JY; Kim JW
    Biochem Biophys Res Commun; 1999 Oct; 263(3):765-9. PubMed ID: 10512754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of calmodulin antagonists on calmodulin-induced biphasic modulation of Ca(2+)-induced Ca2+ release.
    Ikemoto T; Iino M; Endo M
    Br J Pharmacol; 1996 Jun; 118(3):690-4. PubMed ID: 8762095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calmodulin inhibition of brain membrane phosphorylation.
    Thayer SA; Lemon RH; Fairhurst AS
    J Neurochem; 1983 Oct; 41(4):1090-3. PubMed ID: 6619848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calmodulin-binding proteins of calcium-independent type in rat brain synaptosomal membranes: their localization and properties.
    Natsukari N; Miwa A; Fujita M
    Biochem Biophys Res Commun; 1992 Mar; 183(2):725-32. PubMed ID: 1312840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The activity of calmodulin is altered by phosphorylation: modulation of calmodulin function by the site of phosphate incorporation.
    Sacks DB; Mazus B; Joyal JL
    Biochem J; 1995 Nov; 312 ( Pt 1)(Pt 1):197-204. PubMed ID: 7492313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulatory interactions of calmodulin-binding proteins: phosphorylation of calcineurin by autophosphorylated Ca2+/calmodulin-dependent protein kinase II.
    Hashimoto Y; King MM; Soderling TR
    Proc Natl Acad Sci U S A; 1988 Sep; 85(18):7001-5. PubMed ID: 2842800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Ca2+/calmodulin-dependent protein kinase IV (CaM-kinase IV) by changing its susceptibility to phosphorylation by CaM-kinase kinases.
    Okuno S; Kitani T; Fujisawa H
    J Biochem; 1997 Nov; 122(5):897-900. PubMed ID: 9443802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium transport by sarcoplasmic reticulum of vascular smooth muscle: II. Effects of calmodulin and calmodulin inhibitors.
    Stout MA; Silver PJ
    J Cell Physiol; 1992 Oct; 153(1):169-75. PubMed ID: 1522130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneity of binding sites on cardiac muscarinic receptors induced by the neuromuscular blocking agents gallamine and pancuronium.
    Dunlap J; Brown JH
    Mol Pharmacol; 1983 Jul; 24(1):15-22. PubMed ID: 6135150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.