These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30023847)

  • 1. Initiation, Elongation, and Termination of Bacterial Cellulose Synthesis.
    McManus JB; Yang H; Wilson L; Kubicki JD; Tien M
    ACS Omega; 2018 Mar; 3(3):2690-2698. PubMed ID: 30023847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic analysis of cellulose synthase of Gluconacetobacter hansenii in whole cells and in purified form.
    McManus JB; Wilson L; Yang H; Kubicki JD; Tien M
    Enzyme Microb Technol; 2018 Dec; 119():24-29. PubMed ID: 30243383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulations of Cellulose Synthesis Initiation and Termination in Bacteria.
    Yang H; McManus J; Oehme D; Singh A; Yingling YG; Tien M; Kubicki JD
    J Phys Chem B; 2019 May; 123(17):3699-3705. PubMed ID: 30983346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sitosterol-beta-glucoside as primer for cellulose synthesis in plants.
    Peng L; Kawagoe Y; Hogan P; Delmer D
    Science; 2002 Jan; 295(5552):147-50. PubMed ID: 11778054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-molecule investigations of single-chain cellulose biosynthesis.
    Hilton MA; Manning HW; Górniak I; Brady SK; Johnson MM; Zimmer J; Lang MJ
    Proc Natl Acad Sci U S A; 2022 Oct; 119(40):e2122770119. PubMed ID: 36161928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the Cellulose Synthase Complex of Gluconacetobacter hansenii at 23.4 Å Resolution.
    Du J; Vepachedu V; Cho SH; Kumar M; Nixon BT
    PLoS One; 2016; 11(5):e0155886. PubMed ID: 27214134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AcsA-AcsB: The core of the cellulose synthase complex from Gluconacetobacter hansenii ATCC23769.
    McManus JB; Deng Y; Nagachar N; Kao TH; Tien M
    Enzyme Microb Technol; 2016 Jan; 82():58-65. PubMed ID: 26672449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemistry with an artificial primer of polyhydroxybutyrate synthase suggests a mechanism for chain termination.
    Buckley RM; Stubbe J
    Biochemistry; 2015 Mar; 54(12):2117-25. PubMed ID: 25741756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding and kinetic properties of HIV-1 reverse transcriptase markedly differ during initiation and elongation of reverse transcription.
    Lanchy JM; Ehresmann C; Le Grice SF; Ehresmann B; Marquet R
    EMBO J; 1996 Dec; 15(24):7178-87. PubMed ID: 9003793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription termination in Escherichia coli. Measurement of the rate of enzyme release from Rho-independent terminators.
    Arndt KM; Chamberlin MJ
    J Mol Biol; 1988 Jul; 202(2):271-85. PubMed ID: 2459392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How Cellulose Elongates--A QM/MM Study of the Molecular Mechanism of Cellulose Polymerization in Bacterial CESA.
    Yang H; Zimmer J; Yingling YG; Kubicki JD
    J Phys Chem B; 2015 Jun; 119(22):6525-35. PubMed ID: 25942604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pre-steady-state and steady-state kinetic studies on transcription initiation catalyzed by T7 RNA polymerase and its active-site mutants K631R and Y639F.
    Woody AY; Osumi-Davis PA; Hiremath MM; Woody RW
    Biochemistry; 1998 Nov; 37(45):15958-64. PubMed ID: 9843402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582.
    Florea M; Reeve B; Abbott J; Freemont PS; Ellis T
    Sci Rep; 2016 Mar; 6():23635. PubMed ID: 27010592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic mechanism of transcription initiation by bacteriophage T7 RNA polymerase.
    Jia Y; Patel SS
    Biochemistry; 1997 Apr; 36(14):4223-32. PubMed ID: 9100017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. D-3-hydroxybutyrate dehydrogenase from Rhodopseudomonas spheroides. Kinetic mechanism from steady-state kinetics of the reaction catalysed by the enzyme in solution and covalently attached to diethylaminoethylcellulose.
    Preuveneers MJ; Peacock D; Crook EM; Clark JB; Brocklehurst K
    Biochem J; 1973 May; 133(1):133-57. PubMed ID: 4352835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A steady-state theory for processive cellulases.
    Cruys-Bagger N; Elmerdahl J; Praestgaard E; Borch K; Westh P
    FEBS J; 2013 Aug; 280(16):3952-61. PubMed ID: 23786663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic characterization of the polymerase and exonuclease activities of the gene 43 protein of bacteriophage T4.
    Capson TL; Peliska JA; Kaboord BF; Frey MW; Lively C; Dahlberg M; Benkovic SJ
    Biochemistry; 1992 Nov; 31(45):10984-94. PubMed ID: 1332748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants.
    Amor Y; Haigler CH; Johnson S; Wainscott M; Delmer DP
    Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9353-7. PubMed ID: 7568131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of two cellulose morphology mutants of Gluconacetobacter hansenii ATCC23769 producing cellulose with lower crystallinity.
    Deng Y; Nagachar N; Fang L; Luan X; Catchmark JM; Tien M; Kao TH
    PLoS One; 2015; 10(3):e0119504. PubMed ID: 25790428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pre-steady-state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant.
    Patel SS; Wong I; Johnson KA
    Biochemistry; 1991 Jan; 30(2):511-25. PubMed ID: 1846298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.