These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30023847)

  • 21. Pre-steady-state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant.
    Patel SS; Wong I; Johnson KA
    Biochemistry; 1991 Jan; 30(2):511-25. PubMed ID: 1846298
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [beta]-Glucan Synthesis in the Cotton Fiber (II. Regulation and Kinetic Properties of [beta]-Glucan Synthases.
    Li L; Brown RM
    Plant Physiol; 1993 Apr; 101(4):1143-1148. PubMed ID: 12231765
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rho-dependent termination within the trp t' terminator. II. Effects of kinetic competition and rho processivity.
    Zhu AQ; von Hippel PH
    Biochemistry; 1998 Aug; 37(32):11215-22. PubMed ID: 9698367
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production of Bacterial Cellulose by
    Costa AFS; Almeida FCG; Vinhas GM; Sarubbo LA
    Front Microbiol; 2017; 8():2027. PubMed ID: 29089941
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of cellulose and other exopolysaccharides produced from Gluconacetobacter strains.
    Fang L; Catchmark JM
    Carbohydr Polym; 2015 Jan; 115():663-9. PubMed ID: 25439946
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis.
    Gou JY; Wang LJ; Chen SP; Hu WL; Chen XY
    Cell Res; 2007 May; 17(5):422-34. PubMed ID: 17387330
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probing the role of tightly bound phosphoenolpyruvate in Escherichia coli 3-deoxy-d-manno-octulosonate 8-phosphate synthase catalysis using quantitative time-resolved electrospray ionization mass spectrometry in the millisecond time range.
    Li Z; Sau AK; Furdui CM; Anderson KS
    Anal Biochem; 2005 Aug; 343(1):35-47. PubMed ID: 15979047
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigation of Bacterial Cellulose Biosynthesis Mechanism in Gluconoacetobacter hansenii.
    Mohite BV; Patil SV
    ISRN Microbiol; 2014; 2014():836083. PubMed ID: 25031880
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of RNA chain elongation and termination by Saccharomyces cerevisiae RNA polymerase III.
    Matsuzaki H; Kassavetis GA; Geiduschek EP
    J Mol Biol; 1994 Jan; 235(4):1173-92. PubMed ID: 8308883
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Topology of the maize mixed linkage (1->3),(1->4)-beta-d-glucan synthase at the Golgi membrane.
    Urbanowicz BR; Rayon C; Carpita NC
    Plant Physiol; 2004 Feb; 134(2):758-68. PubMed ID: 14730082
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellulose synthesis by Acetobacter xylinum. II. Investigation into the relation between cellulose synthesis and cell envelope components.
    Cooper D; Manley RS
    Biochim Biophys Acta; 1975 Jan; 381(1):97-108. PubMed ID: 803381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529.
    Mohite BV; Patil SV
    Carbohydr Polym; 2014 Jun; 106():132-41. PubMed ID: 24721060
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular mechanism of sequence-specific termination of lentiviral replication.
    Berdis AJ; Stetor SR; LeGrice SF; Barkley MD
    Biochemistry; 2001 Oct; 40(40):12140-9. PubMed ID: 11580289
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellulose synthesis by Acetobacter xylinum. III. Matrix, primer and lipid requirements and heat stability of the cellulose-forming enzymes.
    Cooper D; Manley RS
    Biochim Biophys Acta; 1975 Jan; 381(1):109-19. PubMed ID: 1111578
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sucrose phosphate synthase activity rises in correlation with high-rate cellulose synthesis in three heterotrophic systems.
    Babb VM; Haigler CH
    Plant Physiol; 2001 Nov; 127(3):1234-42. PubMed ID: 11706202
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simulations of cellulose translocation in the bacterial cellulose synthase suggest a regulatory mechanism for the dimeric structure of cellulose.
    Knott BC; Crowley MF; Himmel ME; Zimmer J; Beckham GT
    Chem Sci; 2016 May; 7(5):3108-3116. PubMed ID: 27143998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacterial cellulose production by Komagataeibacter hansenii using algae-based glucose.
    Uzyol HK; Saçan MT
    Environ Sci Pollut Res Int; 2017 Apr; 24(12):11154-11162. PubMed ID: 27312900
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of Bacterial Cellulose by Gluconacetobacter hansenii CGMCC 3917.
    Feng X; Ullah N; Wang X; Sun X; Li C; Bai Y; Chen L; Li Z
    J Food Sci; 2015 Oct; 80(10):E2217-27. PubMed ID: 26352877
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacterial cellulose/hyaluronic acid nanocomposites production through co-culturing Gluconacetobacter hansenii and Lactococcus lactis in a two-vessel circulating system.
    Liu K; Catchmark JM
    Bioresour Technol; 2019 Oct; 290():121715. PubMed ID: 31295575
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New evidence for an intermediate polymer of glucose in cellulose biosynthesis by Acetobacter xylinum.
    Kjosbakken J; Colvin JR
    Can J Microbiol; 1975 Feb; 21(2):111-20. PubMed ID: 1111860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.