These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30024005)

  • 1. Nanostructuring few-layer graphene films with swift heavy ions for electronic application: tuning of electronic and transport properties.
    Nebogatikova NA; Antonova IV; Erohin SV; Kvashnin DG; Olejniczak A; Volodin VA; Skuratov AV; Krasheninnikov AV; Sorokin PB; Chernozatonskii LA
    Nanoscale; 2018 Aug; 10(30):14499-14509. PubMed ID: 30024005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualization of Swift Ion Tracks in Suspended Local Diamondized Few-Layer Graphene.
    Nebogatikova NA; Antonova IV; Gutakovskii AK; Smovzh DV; Volodin VA; Sorokin PB
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Work Function Modulation of Few-Layer Graphene by Swift Heavy Ion Irradiation.
    Kasana PK; Shakya J; Mohanty T
    J Nanosci Nanotechnol; 2021 Nov; 21(11):5603-5610. PubMed ID: 33980369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification/annealing of graphene with 100-MeV Ag ion irradiation.
    Kumar S; Tripathi A; Singh F; Khan SA; Baranwal V; Avasthi DK
    Nanoscale Res Lett; 2014; 9(1):126. PubMed ID: 24636520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion-induced elongation of gold nanoparticles in silica by irradiation with Ag and Cu swift heavy ions: track radius and energy loss threshold.
    Dawi EA; Vredenberg AM; Rizza G; Toulemonde M
    Nanotechnology; 2011 May; 22(21):215607. PubMed ID: 21451236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Periodic Arrays of Phosphorene Nanopores as Antidot Lattices with Tunable Properties.
    Cupo A; Masih Das P; Chien CC; Danda G; Kharche N; Tristant D; Drndić M; Meunier V
    ACS Nano; 2017 Jul; 11(7):7494-7507. PubMed ID: 28666086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dirac model of electronic transport in graphene antidot barriers.
    Thomsen MR; Brun SJ; Pedersen TG
    J Phys Condens Matter; 2014 Aug; 26(33):335301. PubMed ID: 25071080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of fluence dependent 120 MeV Ag swift heavy ion irradiation on the changes in structural, electronic, and optical properties of AgInSe
    Panda R; Khan SA; Singh UP; Naik R; Mishra NC
    RSC Adv; 2021 Jul; 11(42):26218-26227. PubMed ID: 35479461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of Bilayer and Trilayer Graphene to High-Energy Heavy Ion Irradiation.
    Iveković D; Kumar S; Gajović A; Čižmar T; Karlušić M
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36836962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Band gap engineering for single-layer graphene by using slow Li(+) ions.
    Ryu M; Lee P; Kim J; Park H; Chung J
    Nanotechnology; 2016 Aug; 27(31):31LT03. PubMed ID: 27345294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomistic-Scale Simulations of Defect Formation in Graphene under Noble Gas Ion Irradiation.
    Yoon K; Rahnamoun A; Swett JL; Iberi V; Cullen DA; Vlassiouk IV; Belianinov A; Jesse S; Sang X; Ovchinnikova OS; Rondinone AJ; Unocic RR; van Duin AC
    ACS Nano; 2016 Sep; 10(9):8376-84. PubMed ID: 27532882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cutting and controlled modification of graphene with ion beams.
    Lehtinen O; Kotakoski J; Krasheninnikov AV; Keinonen J
    Nanotechnology; 2011 Apr; 22(17):175306. PubMed ID: 21411912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Band structures and transport properties of zigzag graphene nanoribbons with antidot arrays.
    Zhang YT; Li QM; Li YC; Zhang YY; Zhai F
    J Phys Condens Matter; 2010 Aug; 22(31):315304. PubMed ID: 21399360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aryl functionalization as a route to band gap engineering in single layer graphene devices.
    Zhang H; Bekyarova E; Huang JW; Zhao Z; Bao W; Wang F; Haddon RC; Lau CN
    Nano Lett; 2011 Oct; 11(10):4047-51. PubMed ID: 21875083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amorphization of nanocrystalline monoclinic ZrO2 by swift heavy ion irradiation.
    Lu F; Wang J; Lang M; Toulemonde M; Namavar F; Trautmann C; Zhang J; Ewing RC; Lian J
    Phys Chem Chem Phys; 2012 Sep; 14(35):12295-300. PubMed ID: 22858872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic selectivity and filtration from fragmented dehydration in multilayer graphene nanopores.
    Sahu S; Zwolak M
    Nanoscale; 2017 Aug; 9(32):11424-11428. PubMed ID: 28767109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Memristive FG-PVA Structures Fabricated with the Use of High Energy Xe Ion Irradiation.
    Ivanov AI; Antonova IV; Nebogatikova NA; Olejniczak A
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of swift heavy ions in Ni-Al nanocrystalline films studied by X-ray absorption spectroscopy.
    Asokan K; Tsai HM; Bao CW; Chiou JW; Pong WF; Sonia G; Anand TJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jul; 70(2):454-7. PubMed ID: 18280782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy deposition by heavy ions: additivity of kinetic and potential energy contributions in hillock formation on CaF2.
    Wang YY; Grygiel C; Dufour C; Sun JR; Wang ZG; Zhao YT; Xiao GQ; Cheng R; Zhou XM; Ren JR; Liu SD; Lei Y; Sun YB; Ritter R; Gruber E; Cassimi A; Monnet I; Bouffard S; Aumayr F; Toulemonde M
    Sci Rep; 2014 Jul; 4():5742. PubMed ID: 25034006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.