These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 30024101)
1. Single Copy Transgene Integration in a Transcriptionally Active Site for Recombinant Protein Synthesis. O'Brien SA; Lee K; Fu HY; Lee Z; Le TS; Stach CS; McCann MG; Zhang AQ; Smanski MJ; Somia NV; Hu WS Biotechnol J; 2018 Oct; 13(10):e1800226. PubMed ID: 30024101 [TBL] [Abstract][Full Text] [Related]
2. The new frontier in CHO cell line development: From random to targeted transgene integration technologies. Zeh N; Schmidt M; Schulz P; Fischer S Biotechnol Adv; 2024 Oct; 75():108402. PubMed ID: 38950872 [TBL] [Abstract][Full Text] [Related]
3. Systematic identification of safe harbor regions in the CHO genome through a comprehensive epigenome analysis. Hilliard W; Lee KH Biotechnol Bioeng; 2021 Feb; 118(2):659-675. PubMed ID: 33049068 [TBL] [Abstract][Full Text] [Related]
4. Improved recombinant antibody production by CHO cells using a production enhancer DNA element with repeated transgene integration at a predetermined chromosomal site. Kawabe Y; Inao T; Komatsu S; Huang G; Ito A; Omasa T; Kamihira M J Biosci Bioeng; 2017 Mar; 123(3):390-397. PubMed ID: 27856232 [TBL] [Abstract][Full Text] [Related]
5. Rapid development of stable transgene CHO cell lines by CRISPR/Cas9-mediated site-specific integration into C12orf35. Zhao M; Wang J; Luo M; Luo H; Zhao M; Han L; Zhang M; Yang H; Xie Y; Jiang H; Feng L; Lu H; Zhu J Appl Microbiol Biotechnol; 2018 Jul; 102(14):6105-6117. PubMed ID: 29789882 [TBL] [Abstract][Full Text] [Related]
6. Preselection of recombinant gene integration sites enabling high transcription rates in CHO cells using alternate start codons and recombinase mediated cassette exchange. Baumann M; Gludovacz E; Sealover N; Bahr S; George H; Lin N; Kayser K; Borth N Biotechnol Bioeng; 2017 Nov; 114(11):2616-2627. PubMed ID: 28734047 [TBL] [Abstract][Full Text] [Related]
7. A system for site-specific integration of transgenes in mammalian cells. Chi X; Zheng Q; Jiang R; Chen-Tsai RY; Kong LJ PLoS One; 2019; 14(7):e0219842. PubMed ID: 31344144 [TBL] [Abstract][Full Text] [Related]
8. Targeted integration in CHO cells using CRIS-PITCh/Bxb1 recombinase-mediated cassette exchange hybrid system. Ghanbari S; Bayat E; Azizi M; Fard-Esfahani P; Modarressi MH; Davami F Appl Microbiol Biotechnol; 2023 Feb; 107(2-3):769-783. PubMed ID: 36536089 [TBL] [Abstract][Full Text] [Related]
9. Accumulative scFv-Fc antibody gene integration into the hprt chromosomal locus of Chinese hamster ovary cells. Wang X; Kawabe Y; Kato R; Hada T; Ito A; Yamana Y; Kondo M; Kamihira M J Biosci Bioeng; 2017 Nov; 124(5):583-590. PubMed ID: 28662917 [TBL] [Abstract][Full Text] [Related]
10. Targeted transgene insertion into the CHO cell genome using Cre recombinase-incorporating integrase-defective retroviral vectors. Kawabe Y; Shimomura T; Huang S; Imanishi S; Ito A; Kamihira M Biotechnol Bioeng; 2016 Jul; 113(7):1600-10. PubMed ID: 26724679 [TBL] [Abstract][Full Text] [Related]
11. Generation of stable cell lines by site-specific integration of transgenes into engineered Chinese hamster ovary strains using an FLP-FRT system. Zhou H; Liu ZG; Sun ZW; Huang Y; Yu WY J Biotechnol; 2010 May; 147(2):122-9. PubMed ID: 20371256 [TBL] [Abstract][Full Text] [Related]
12. Accurate comparison of antibody expression levels by reproducible transgene targeting in engineered recombination-competent CHO cells. Mayrhofer P; Kratzer B; Sommeregger W; Steinfellner W; Reinhart D; Mader A; Turan S; Qiao J; Bode J; Kunert R Appl Microbiol Biotechnol; 2014 Dec; 98(23):9723-33. PubMed ID: 25158835 [TBL] [Abstract][Full Text] [Related]
13. The PiggyBac transposon enhances the frequency of CHO stable cell line generation and yields recombinant lines with superior productivity and stability. Matasci M; Baldi L; Hacker DL; Wurm FM Biotechnol Bioeng; 2011 Sep; 108(9):2141-50. PubMed ID: 21495018 [TBL] [Abstract][Full Text] [Related]
14. Rapid construction of transgene-amplified CHO cell lines by cell cycle checkpoint engineering. Lee KH; Onitsuka M; Honda K; Ohtake H; Omasa T Appl Microbiol Biotechnol; 2013 Jul; 97(13):5731-41. PubMed ID: 23615744 [TBL] [Abstract][Full Text] [Related]
15. Ubiquitous Chromatin Opening Elements (UCOEs) effect on transgene position and expression stability in CHO cells following methotrexate (MTX) amplification. Betts Z; Dickson AJ Biotechnol J; 2016 Mar; 11(4):554-64. PubMed ID: 26632501 [TBL] [Abstract][Full Text] [Related]
16. Revealing Key Determinants of Clonal Variation in Transgene Expression in Recombinant CHO Cells Using Targeted Genome Editing. Lee JS; Park JH; Ha TK; Samoudi M; Lewis NE; Palsson BO; Kildegaard HF; Lee GM ACS Synth Biol; 2018 Dec; 7(12):2867-2878. PubMed ID: 30388888 [TBL] [Abstract][Full Text] [Related]
17. SV40 intron, a potent strong intron element that effectively increases transgene expression in transfected Chinese hamster ovary cells. Xu DH; Wang XY; Jia YL; Wang TY; Tian ZW; Feng X; Zhang YN J Cell Mol Med; 2018 Apr; 22(4):2231-2239. PubMed ID: 29441681 [TBL] [Abstract][Full Text] [Related]
18. Interplay of Promoter Usage and Intragenic CpG Content: Impact on GFP Reporter Gene Expression. Krinner S; Heitzer A; Asbach B; Wagner R Hum Gene Ther; 2015 Dec; 26(12):826-40. PubMed ID: 26414116 [TBL] [Abstract][Full Text] [Related]
19. Concurrent transfection of randomized transgene configurations into targeted integration CHO host is an advantageous and cost-effective method for expression of complex molecules. Dong E; Lam C; Tang D; Louie S; Yim M; Williams AJ; Sawyer W; Yip S; Carver J; AlBarakat A; Tsukuda J; Snedecor B; Misaghi S Biotechnol J; 2021 Apr; 16(4):e2000230. PubMed ID: 33259700 [TBL] [Abstract][Full Text] [Related]
20. Epigenomic features revealed by ATAC-seq impact transgene expression in CHO cells. Lee Z; Raabe M; Hu WS Biotechnol Bioeng; 2021 May; 118(5):1851-1861. PubMed ID: 33521928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]