BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 30024719)

  • 1. Amorphous Carbon-Derived Nanosheet-Bricked Porous Graphite as High-Performance Cathode for Aluminum-Ion Batteries.
    Zhang C; He R; Zhang J; Hu Y; Wang Z; Jin X
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26510-26516. PubMed ID: 30024719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemically Driven Transformation of Amorphous Carbons to Crystalline Graphite Nanoflakes: A Facile and Mild Graphitization Method.
    Peng J; Chen N; He R; Wang Z; Dai S; Jin X
    Angew Chem Int Ed Engl; 2017 Feb; 56(7):1751-1755. PubMed ID: 28090748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-efficiency transformation of amorphous carbon into graphite nanoflakes for stable aluminum-ion battery cathodes.
    Tu J; Wang J; Li S; Song WL; Wang M; Zhu H; Jiao S
    Nanoscale; 2019 Jul; 11(26):12537-12546. PubMed ID: 31169859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Birnessite Nanosheet Arrays with High K Content as a High-Capacity and Ultrastable Cathode for K-Ion Batteries.
    Lin B; Zhu X; Fang L; Liu X; Li S; Zhai T; Xue L; Guo Q; Xu J; Xia H
    Adv Mater; 2019 Jun; 31(24):e1900060. PubMed ID: 31045288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards highly stable storage of sodium ions: a porous Na(3)V(2)(PO(4))(3)/C cathode material for sodium-ion batteries.
    Shen W; Wang C; Liu H; Yang W
    Chemistry; 2013 Oct; 19(43):14712-8. PubMed ID: 24014393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of graphitization degree of carbonaceous material on the electrochemical performance for aluminum-ion batteries.
    Wang J; Tu J; Lei H; Zhu H
    RSC Adv; 2019 Nov; 9(67):38990-38997. PubMed ID: 35540677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Cost Transformation of Biomass-Derived Carbon to High-Performing Nano-graphite via Low-Temperature Electrochemical Graphitization.
    Thapaliya BP; Luo H; Halstenberg P; Meyer HM; Dunlap JR; Dai S
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4393-4401. PubMed ID: 33433992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Defect-Density Graphite for Superior-Performance Aluminum-Ion Batteries with Ultra-Fast Charging and Stable Long Life.
    Kim J; Raj MR; Lee G
    Nanomicro Lett; 2021 Aug; 13(1):171. PubMed ID: 34370082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pencil-Drawing Graphite Nanosheets: A Simple and Effective Cathode for High-Capacity Aluminum Batteries.
    Yu J; Li X; Li N; Wu T; Liu Y; Li C; Liu J; Wang L
    Small Methods; 2022 Apr; 6(4):e2200026. PubMed ID: 35233980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational selection of amorphous or crystalline V
    Liu S; Tong Z; Zhao J; Liu X; Wang J; Ma X; Chi C; Yang Y; Liu X; Li Y
    Phys Chem Chem Phys; 2016 Sep; 18(36):25645-25654. PubMed ID: 27711585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical intercalation of anions into graphite: Fundamental aspects, material synthesis, and application to the cathode of dual-ion batteries.
    Matsuo Y; Inoo A; Inamoto J
    ChemistryOpen; 2024 Mar; ():e202300244. PubMed ID: 38426688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-Dimensional Vanadium Carbide (MXene) as a High-Capacity Cathode Material for Rechargeable Aluminum Batteries.
    VahidMohammadi A; Hadjikhani A; Shahbazmohamadi S; Beidaghi M
    ACS Nano; 2017 Nov; 11(11):11135-11144. PubMed ID: 29039915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Innovative Freeze-Dried Reduced Graphene Oxide Supported SnS
    Hu Y; Luo B; Ye D; Zhu X; Lyu M; Wang L
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28370537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-Principles Study of Lithium Borocarbide as a Cathode Material for Rechargeable Li ion Batteries.
    Xu Q; Ban C; Dillon AC; Wei SH; Zhao Y
    J Phys Chem Lett; 2011 May; 2(10):1129-32. PubMed ID: 26295314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tremella-like Vanadium Tetrasulfide as a High-Performance Cathode Material for Rechargeable Aluminum Batteries.
    Han X; Wu F; Zhao R; Bai Y; Wu C
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):6888-6901. PubMed ID: 36696545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-Time Observation of Anion Reaction in High Performance Al Ion Batteries.
    Lee TS; Patil SB; Kao YT; An JY; Lee YC; Lai YH; Chang CK; Cheng YS; Chuang YC; Sheu HS; Wu CH; Yang CC; Cheng RH; Lee CY; Peng PY; Lai LH; Lee HH; Wang DY
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2572-2580. PubMed ID: 31860265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical fulvic acid derived amorphous carbon modified microcrystalline graphite as low-cost anode for potassium-ion storage.
    Zhuo P; Jiang J; Jiang Y; Hao Y; He Q; Chen T; Ding E; Zhang Y; Han Y; Si W; Ju Z; Cao Y; Xing Y; Gui X
    J Colloid Interface Sci; 2023 Oct; 648():108-116. PubMed ID: 37295362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anionic Se-Substitution toward High-Performance CuS
    Wang Z; Zhu Y; Qiao C; Yang S; Jia J; Rafai S; Ma X; Wu S; Ji F; Cao C
    Small; 2019 Oct; 15(42):e1902797. PubMed ID: 31460703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Activating, Capacitive Anion Intercalation Enables High-Power Graphite Cathodes.
    Wang G; Yu M; Wang J; Li D; Tan D; Löffler M; Zhuang X; Müllen K; Feng X
    Adv Mater; 2018 May; 30(20):e1800533. PubMed ID: 29602214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.