BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 30024735)

  • 1. Electrical Signal Reporter, Pore-Forming Protein, for Rapid, Miniaturized, and Universal Identification of Microorganisms.
    Wan Y; Song F; Wang G; Liu H; An M; Wang A; Wu X; Ma C; Wang N
    Anal Chem; 2018 Aug; 90(16):9853-9858. PubMed ID: 30024735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanopore-Based Selective Discrimination of MicroRNAs with Single-Nucleotide Difference Using Locked Nucleic Acid-Modified Probes.
    Xi D; Shang J; Fan E; You J; Zhang S; Wang H
    Anal Chem; 2016 Nov; 88(21):10540-10546. PubMed ID: 27734673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forming an alpha-hemolysin nanopore for single-molecule analysis.
    Jetha NN; Wiggin M; Marziali A
    Methods Mol Biol; 2009; 544():113-27. PubMed ID: 19488697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonfunctionalized PNAs as Beacons for Nucleic Acid Detection in a Nanopore System.
    Asandei A; Mereuta L; Park J; Seo CH; Park Y; Luchian T
    ACS Sens; 2019 Jun; 4(6):1502-1507. PubMed ID: 31119934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence-specific detection of single-stranded DNA with a gold nanoparticle-protein nanopore approach.
    Mereuta L; Asandei A; Dragomir IS; Bucataru IC; Park J; Seo CH; Park Y; Luchian T
    Sci Rep; 2020 Jul; 10(1):11323. PubMed ID: 32647249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of Lys147 in the interaction between MPSA-gold nanoparticles and the α-hemolysin nanopore.
    Campos E; Asandei A; McVey CE; Dias JC; Oliveira AS; Soares CM; Luchian T; Astier Y
    Langmuir; 2012 Nov; 28(44):15643-50. PubMed ID: 23046444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multichannel simultaneous measurements of single-molecule translocation in alpha-hemolysin nanopore array.
    Osaki T; Suzuki H; Le Pioufle B; Takeuchi S
    Anal Chem; 2009 Dec; 81(24):9866-70. PubMed ID: 20000639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids.
    Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A
    Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of functional Staphylococcus aureus alpha-hemolysin channels in tethered bilayer lipid membranes.
    McGillivray DJ; Valincius G; Heinrich F; Robertson JW; Vanderah DJ; Febo-Ayala W; Ignatjev I; Lösche M; Kasianowicz JJ
    Biophys J; 2009 Feb; 96(4):1547-53. PubMed ID: 19217871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembled alpha-hemolysin pores in an S-layer-supported lipid bilayer.
    Schuster B; Pum D; Braha O; Bayley H; Sleytr UB
    Biochim Biophys Acta; 1998 Mar; 1370(2):280-8. PubMed ID: 9545583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-molecule DNA detection using a novel SP1 protein nanopore.
    Wang HY; Li Y; Qin LX; Heyman A; Shoseyov O; Willner I; Long YT; Tian H
    Chem Commun (Camb); 2013 Feb; 49(17):1741-3. PubMed ID: 23340583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual detection of nucleic acids based on lateral flow biosensor and hybridization chain reaction amplification.
    Ying N; Ju C; Li Z; Liu W; Wan J
    Talanta; 2017 Mar; 164():432-438. PubMed ID: 28107953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrimination of neutral oligosaccharides through a nanopore.
    Bacri L; Oukhaled A; Hémon E; Bassafoula FB; Auvray L; Daniel R
    Biochem Biophys Res Commun; 2011 Sep; 412(4):561-4. PubMed ID: 21839725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence-Specific Electrical Purification of Nucleic Acids with Nanoporous Gold Electrodes.
    Daggumati P; Appelt S; Matharu Z; Marco ML; Seker E
    J Am Chem Soc; 2016 Jun; 138(24):7711-7. PubMed ID: 27244455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA-assisted oligomerization of pore-forming toxin monomers into precisely-controlled protein channels.
    Henning-Knechtel A; Knechtel J; Magzoub M
    Nucleic Acids Res; 2017 Dec; 45(21):12057-12068. PubMed ID: 29088457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ultrasensitive electrochemical genosensor for Brucella based on palladium nanoparticles.
    Rahi A; Sattarahmady N; Heli H
    Anal Biochem; 2016 Oct; 510():11-17. PubMed ID: 27423961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blocking of Single α-Hemolysin Pore by Rhodamine Derivatives.
    Rokitskaya TI; Nazarov PA; Golovin AV; Antonenko YN
    Biophys J; 2017 Jun; 112(11):2327-2335. PubMed ID: 28591605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electric migration of α-hemolysin in supported n-bilayers: a model for transmembrane protein microelectrophoresis.
    Harb F; Tinland B
    Electrophoresis; 2013 Nov; 34(20-21):3054-63. PubMed ID: 23925931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorinated amphiphiles control the insertion of α-hemolysin pores into lipid bilayers.
    Raychaudhuri P; Li Q; Mason A; Mikhailova E; Heron AJ; Bayley H
    Biochemistry; 2011 Mar; 50(10):1599-606. PubMed ID: 21275394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Urea denaturation of alpha-hemolysin pore inserted in planar lipid bilayer detected by single nanopore recording: loss of structural asymmetry.
    Pastoriza-Gallego M; Oukhaled G; Mathé J; Thiebot B; Betton JM; Auvray L; Pelta J
    FEBS Lett; 2007 Jul; 581(18):3371-6. PubMed ID: 17601577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.