BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30024741)

  • 1. Lys-C/Arg-C, a More Specific and Efficient Digestion Approach for Proteomics Studies.
    Wu Z; Huang J; Huang J; Li Q; Zhang X
    Anal Chem; 2018 Aug; 90(16):9700-9707. PubMed ID: 30024741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible Lysine Derivatization Enabling Improved Arg-C Digestion, a Highly Specific Arg-C Digestion Using Trypsin.
    Wu Z; Huang J; Lu J; Zhang X
    Anal Chem; 2018 Feb; 90(3):1554-1559. PubMed ID: 29260870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improve the coverage for the analysis of phosphoproteome of HeLa cells by a tandem digestion approach.
    Bian Y; Ye M; Song C; Cheng K; Wang C; Wei X; Zhu J; Chen R; Wang F; Zou H
    J Proteome Res; 2012 May; 11(5):2828-37. PubMed ID: 22468782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale quantitative assessment of different in-solution protein digestion protocols reveals superior cleavage efficiency of tandem Lys-C/trypsin proteolysis over trypsin digestion.
    Glatter T; Ludwig C; Ahrné E; Aebersold R; Heck AJ; Schmidt A
    J Proteome Res; 2012 Nov; 11(11):5145-56. PubMed ID: 23017020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomics beyond trypsin.
    Tsiatsiani L; Heck AJ
    FEBS J; 2015 Jul; 282(14):2612-26. PubMed ID: 25823410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring protein structural changes on a proteome-wide scale using limited proteolysis-coupled mass spectrometry.
    Schopper S; Kahraman A; Leuenberger P; Feng Y; Piazza I; Müller O; Boersema PJ; Picotti P
    Nat Protoc; 2017 Nov; 12(11):2391-2410. PubMed ID: 29072706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new insight into the impact of different proteases on SILAC quantitative proteome of the mouse liver.
    Ma J; Li W; Lv Y; Chang C; Wu S; Song L; Ding C; Wei H; He F; Jiang Y; Zhu Y
    Proteomics; 2013 Aug; 13(15):2238-42. PubMed ID: 23703833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Assessment of Urea In-Solution Lys-C/Trypsin Digestions Reveals Superior Performance at Room Temperature over Traditional Proteolysis at 37 °C.
    Betancourt LH; Sanchez A; Pla I; Kuras M; Zhou Q; Andersson R; Marko-Varga G
    J Proteome Res; 2018 Jul; 17(7):2556-2561. PubMed ID: 29812944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioaffinity magnetic reactor for peptide digestion followed by analysis using bottom-up shotgun proteomics strategy.
    Korecká L; Jankovicová B; Krenková J; Hernychová L; Slováková M; Le-Nell A; Chmelik J; Foret F; Viovy JL; Bilková Z
    J Sep Sci; 2008 Feb; 31(3):507-15. PubMed ID: 18266262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why less is more when generating tryptic peptides in bottom-up proteomics.
    Hildonen S; Halvorsen TG; Reubsaet L
    Proteomics; 2014 Sep; 14(17-18):2031-41. PubMed ID: 25044798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual matrix-based immobilized trypsin for complementary proteolytic digestion and fast proteomics analysis with higher protein sequence coverage.
    Fan C; Shi Z; Pan Y; Song Z; Zhang W; Zhao X; Tian F; Peng B; Qin W; Cai Y; Qian X
    Anal Chem; 2014 Feb; 86(3):1452-8. PubMed ID: 24447065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating Lys-N proteolysis and N-terminal guanidination for improved fragmentation and relative quantification of singly-charged ions.
    Carabetta VJ; Li T; Shakya A; Greco TM; Cristea IM
    J Am Soc Mass Spectrom; 2010 Jun; 21(6):1050-60. PubMed ID: 20207164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Approach to Incorporate Multi-Enzyme Digestion into C-TAILS for C-Terminomics Studies.
    Zhang Y; Li Q; Huang J; Wu Z; Huang J; Huang L; Li Y; Ye J; Zhang X
    Proteomics; 2018 Jan; 18(1):. PubMed ID: 29152854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tryptic Peptides Bearing C-Terminal Dimethyllysine Need to Be Considered during the Analysis of Lysine Dimethylation in Proteomic Study.
    Chen M; Zhang M; Zhai L; Hu H; Liu P; Tan M
    J Proteome Res; 2017 Sep; 16(9):3460-3469. PubMed ID: 28730820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variable Digestion Strategies for Phosphoproteomics Analysis.
    Gonczarowska-Jorge H; Dell'Aica M; Dickhut C; Zahedi RP
    Methods Mol Biol; 2016; 1355():225-39. PubMed ID: 26584929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Getting intimate with trypsin, the leading protease in proteomics.
    Vandermarliere E; Mueller M; Martens L
    Mass Spectrom Rev; 2013; 32(6):453-65. PubMed ID: 23775586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Tandem LysC/Trypsin Digestion in Detergent Conditions.
    Hakobyan A; Schneider MB; Liesack W; Glatter T
    Proteomics; 2019 Oct; 19(20):e1900136. PubMed ID: 31536157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trypsin immobilization on hairy polymer chains hybrid magnetic nanoparticles for ultra fast, highly efficient proteome digestion, facile 18O labeling and absolute protein quantification.
    Qin W; Song Z; Fan C; Zhang W; Cai Y; Zhang Y; Qian X
    Anal Chem; 2012 Apr; 84(7):3138-44. PubMed ID: 22413971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A qualitative and quantitative evaluation of the peptide characteristics of microwave- and ultrasound-assisted digestion in discovery and targeted proteomic analyses.
    Guo Z; Cheng J; Sun H; Sun W
    Rapid Commun Mass Spectrom; 2017 Aug; 31(16):1353-1362. PubMed ID: 28557149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized proteomic analysis of rat liver microsomes using dual enzyme digestion with 2D-LC-MS/MS.
    Golizeh M; Sleno L
    J Proteomics; 2013 Apr; 82():166-78. PubMed ID: 23454493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.