BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 30024791)

  • 1. Interplay between SUMOylation and NEDDylation regulates RPL11 localization and function.
    El Motiam A; Vidal S; de la Cruz-Herrera CF; Da Silva-Álvarez S; Baz-Martínez M; Seoane R; Vidal A; Rodríguez MS; Xirodimas DP; Carvalho AS; Beck HC; Matthiesen R; Collado M; Rivas C
    FASEB J; 2019 Jan; 33(1):643-651. PubMed ID: 30024791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interplay of the fungal sumoylation network for control of multicellular development.
    Harting R; Bayram O; Laubinger K; Valerius O; Braus GH
    Mol Microbiol; 2013 Dec; 90(5):1125-45. PubMed ID: 24279728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MDM2 promotes SUMO-2/3 modification of p53 to modulate transcriptional activity.
    Stindt MH; Carter S; Vigneron AM; Ryan KM; Vousden KH
    Cell Cycle; 2011 Sep; 10(18):3176-88. PubMed ID: 21900752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of nucleolar signalling to p53 through NEDDylation of L11.
    Sundqvist A; Liu G; Mirsaliotis A; Xirodimas DP
    EMBO Rep; 2009 Oct; 10(10):1132-9. PubMed ID: 19713960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the Role of Paralog-Specific Sumoylation of HDAC1.
    Citro S; Chiocca S
    Methods Mol Biol; 2017; 1510():329-337. PubMed ID: 27761832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small ubiquitin-like modifier 1-3 conjugation [corrected] is activated in human astrocytic brain tumors and is required for glioblastoma cell survival.
    Yang W; Wang L; Roehn G; Pearlstein RD; Ali-Osman F; Pan H; Goldbrunner R; Krantz M; Harms C; Paschen W
    Cancer Sci; 2013 Jan; 104(1):70-7. PubMed ID: 23078246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p53-Ubl fusions as models of ubiquitination, sumoylation and neddylation of p53.
    Carter S; Vousden KH
    Cell Cycle; 2008 Aug; 7(16):2519-28. PubMed ID: 18719371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Ubiquitins, proteasomes, sumoylation and application today and in future for cancer and other diseases therapy II. Sumoylation and neddylation as posttranslational modifications of proteins and their ubiquitinylation and its significance].
    Fuchs O; Neuwirtová R
    Vnitr Lek; 2006 Jun; 52(6):619-27. PubMed ID: 16871767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms and functions of SUMOylation in health and disease: a review focusing on immune cells.
    Huang CH; Yang TT; Lin KI
    J Biomed Sci; 2024 Jan; 31(1):16. PubMed ID: 38280996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-specific characterization of endogenous SUMOylation across species and organs.
    Hendriks IA; Lyon D; Su D; Skotte NH; Daniel JA; Jensen LJ; Nielsen ML
    Nat Commun; 2018 Jun; 9(1):2456. PubMed ID: 29942033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SUMOylation of ATF3 alters its transcriptional activity on regulation of TP53 gene.
    Wang CM; Brennan VC; Gutierrez NM; Wang X; Wang L; Yang WH
    J Cell Biochem; 2013 Mar; 114(3):589-98. PubMed ID: 22991139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myeloma overexpressed 2 (Myeov2) regulates L11 subnuclear localization through Nedd8 modification.
    Ebina M; Tsuruta F; Katoh MC; Kigoshi Y; Someya A; Chiba T
    PLoS One; 2013; 8(6):e65285. PubMed ID: 23776465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PHD3-SUMO conjugation represses HIF1 transcriptional activity independently of PHD3 catalytic activity.
    Núñez-O'Mara A; Gerpe-Pita A; Pozo S; Carlevaris O; Urzelai B; Lopitz-Otsoa F; Rodríguez MS; Berra E
    J Cell Sci; 2015 Jan; 128(1):40-9. PubMed ID: 25380826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced detection of in vivo SUMO conjugation by Ubc9 fusion-dependent sumoylation (UFDS).
    Niedenthal R
    Methods Mol Biol; 2009; 497():63-79. PubMed ID: 19107411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interplay between nuclear transport and ubiquitin/SUMO modifications in the regulation of cancer-related proteins.
    Rodríguez JA
    Semin Cancer Biol; 2014 Aug; 27():11-9. PubMed ID: 24704338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SUMO, Ubiquitin, UBL Proteins: Implications For Human Diseases - Fifth International Conference.
    Skaug B; Chen ZJ
    IDrugs; 2010 Apr; 13(4):224-7. PubMed ID: 20373248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recruitment of RPL11 at promoter sites of p53-regulated genes upon nucleolar stress through NEDD8 and in an Mdm2-dependent manner.
    Mahata B; Sundqvist A; Xirodimas DP
    Oncogene; 2012 Jun; 31(25):3060-71. PubMed ID: 22081073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ubiquitin, SUMO, and NEDD8: Key Targets of Bacterial Pathogens.
    Ribet D; Cossart P
    Trends Cell Biol; 2018 Nov; 28(11):926-940. PubMed ID: 30107971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CACUL1/CAC1 attenuates p53 activity through PML post-translational modification.
    Fukuda T; Kigoshi-Tansho Y; Naganuma T; Kazaana A; Okajima T; Tsuruta F; Chiba T
    Biochem Biophys Res Commun; 2017 Jan; 482(4):863-869. PubMed ID: 27889610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The post-translational modification, SUMOylation, and cancer (Review).
    Han ZJ; Feng YH; Gu BH; Li YM; Chen H
    Int J Oncol; 2018 Apr; 52(4):1081-1094. PubMed ID: 29484374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.