BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 3002491)

  • 1. The physical chemistry of cruciform structures in supercoiled DNA molecules.
    Lilley DM; Gough GW; Hallam LR; Sullivan KM
    Biochimie; 1985; 67(7-8):697-706. PubMed ID: 3002491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale stable opening of supercoiled DNA in response to temperature and supercoiling in (A + T)-rich regions that promote low-salt cruciform extrusion.
    Bowater R; Aboul-ela F; Lilley DM
    Biochemistry; 1991 Dec; 30(49):11495-506. PubMed ID: 1747368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of salts, temperature, and stem length on supercoil-induced formation of cruciforms.
    Singleton CK
    J Biol Chem; 1983 Jun; 258(12):7661-8. PubMed ID: 6863259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The kinetic properties of cruciform extrusion are determined by DNA base-sequence.
    Lilley DM
    Nucleic Acids Res; 1985 Mar; 13(5):1443-65. PubMed ID: 4000940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The supercoil-stabilised cruciform of ColE1 is hyper-reactive to osmium tetroxide.
    Lilley DM; Palecek E
    EMBO J; 1984 May; 3(5):1187-92. PubMed ID: 6329743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA bending induced by cruciform formation.
    Gough GW; Lilley DM
    Nature; 1985 Jan 10-18; 313(5998):154-6. PubMed ID: 2981415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanism of cruciform formation in supercoiled DNA: initial opening of central basepairs in salt-dependent extrusion.
    Murchie AI; Lilley DM
    Nucleic Acids Res; 1987 Dec; 15(23):9641-54. PubMed ID: 3697079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cruciform-resolvase interactions in supercoiled DNA.
    Lilley DM; Kemper B
    Cell; 1984 Feb; 36(2):413-22. PubMed ID: 6319022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure of cruciforms in supercoiled DNA: probing the single-stranded character of nucleotide bases with bisulphite.
    Gough GW; Sullivan KM; Lilley DM
    EMBO J; 1986 Jan; 5(1):191-6. PubMed ID: 3007115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of cruciform extrusion in supercoiled DNA: use of a synthetic inverted repeat to study conformational populations.
    Lilley DM; Markham AF
    EMBO J; 1983; 2(4):527-33. PubMed ID: 6628359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slow cruciform transitions in palindromic DNA.
    Gellert M; O'Dea MH; Mizuuchi K
    Proc Natl Acad Sci U S A; 1983 Sep; 80(18):5545-9. PubMed ID: 6577442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cruciform extrusion in plasmids bearing the replicative intermediate configuration of a poxvirus telomere.
    Dickie P; Morgan AR; McFadden G
    J Mol Biol; 1987 Aug; 196(3):541-58. PubMed ID: 2824785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclic adduct formation at structural perturbations in supercoiled DNA molecules.
    Lilley DM
    IARC Sci Publ; 1986; (70):83-99. PubMed ID: 3793194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of global DNA topology on cruciform formation in supercoiled DNA.
    Oussatcheva EA; Pavlicek J; Sankey OF; Sinden RR; Lyubchenko YL; Potaman VN
    J Mol Biol; 2004 May; 338(4):735-43. PubMed ID: 15099741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress-induced cruciform formation in a cloned d(CATG)10 sequence.
    Naylor LH; Lilley DM; van de Sande JH
    EMBO J; 1986 Sep; 5(9):2407-13. PubMed ID: 3023073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long range structural communication between sequences in supercoiled DNA. Sequence dependence of contextual influence on cruciform extrusion mechanism.
    Sullivan KM; Murchie AI; Lilley DM
    J Biol Chem; 1988 Sep; 263(26):13074-82. PubMed ID: 2843507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile cruciform formation by an (A-T)34 sequence from a Xenopus globin gene.
    Greaves DR; Patient RK; Lilley DM
    J Mol Biol; 1985 Oct; 185(3):461-78. PubMed ID: 2997451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cruciform formation in a negatively supercoiled DNA may be kinetically forbidden under physiological conditions.
    Courey AJ; Wang JC
    Cell; 1983 Jul; 33(3):817-29. PubMed ID: 6871994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of magnesium on cruciform extrusion in supercoiled DNA.
    Vologodskaia MY; Vologodskii AV
    J Mol Biol; 1999 Jun; 289(4):851-9. PubMed ID: 10369766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localized chemical hyperreactivity in supercoiled DNA: evidence for base unpairing in sequences that induce low-salt cruciform extrusion.
    Furlong JC; Sullivan KM; Murchie AI; Gough GW; Lilley DM
    Biochemistry; 1989 Mar; 28(5):2009-17. PubMed ID: 2541769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.