These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
419 related articles for article (PubMed ID: 30024984)
21. Disassembly of Tau fibrils by the human Hsp70 disaggregation machinery generates small seeding-competent species. Nachman E; Wentink AS; Madiona K; Bousset L; Katsinelos T; Allinson K; Kampinga H; McEwan WA; Jahn TR; Melki R; Mogk A; Bukau B; Nussbaum-Krammer C J Biol Chem; 2020 Jul; 295(28):9676-9690. PubMed ID: 32467226 [TBL] [Abstract][Full Text] [Related]
22. Elongation of Fibrils Formed by a Tau Fragment is Inhibited by a Transient Dimeric Intermediate. Kumar H; Udgaonkar JB J Phys Chem B; 2022 May; 126(18):3385-3397. PubMed ID: 35503811 [TBL] [Abstract][Full Text] [Related]
23. Can any "non-specific charge modification within microtubule binding domains of Tau" be a prerequisite of the protein amyloid aggregation? An in vitro study on the 1N4R isoform. Jangholi A; Ashrafi-Kooshk MR; Arab SS; Karima S; Poorebrahim M; Ghadami SA; Moosavi-Movahedi AA; Khodarahmi R Int J Biol Macromol; 2018 Apr; 109():188-204. PubMed ID: 29248553 [TBL] [Abstract][Full Text] [Related]
24. Physiological C-terminal truncation of α-synuclein potentiates the prion-like formation of pathological inclusions. Sorrentino ZA; Vijayaraghavan N; Gorion KM; Riffe CJ; Strang KH; Caldwell J; Giasson BI J Biol Chem; 2018 Dec; 293(49):18914-18932. PubMed ID: 30327435 [TBL] [Abstract][Full Text] [Related]
25. Mechanistic and Structural Origins of the Asymmetric Barrier to Prion-like Cross-Seeding between Tau-3R and Tau-4R. Kumar H; Udgaonkar JB J Mol Biol; 2018 Dec; 430(24):5304-5312. PubMed ID: 30267747 [TBL] [Abstract][Full Text] [Related]
26. Milligram-scale assembly and NMR fingerprint of tau fibrils adopting the Alzheimer's disease fold. Duan P; El Mammeri N; Hong M J Biol Chem; 2024 Jun; 300(6):107326. PubMed ID: 38679331 [TBL] [Abstract][Full Text] [Related]
27. Tau R2 and R3 are essential regions for tau aggregation, seeding and propagation. Annadurai N; Malina L; Malohlava J; Hajdúch M; Das V Biochimie; 2022 Sep; 200():79-86. PubMed ID: 35623497 [TBL] [Abstract][Full Text] [Related]
28. Appraisal of role of the polyanionic inducer length on amyloid formation by 412-residue 1N4R Tau protein: A comparative study. Jangholi A; Ashrafi-Kooshk MR; Arab SS; Riazi G; Mokhtari F; Poorebrahim M; Mahdiuni H; Kurganov BI; Moosavi-Movahedi AA; Khodarahmi R Arch Biochem Biophys; 2016 Nov; 609():1-19. PubMed ID: 27638048 [TBL] [Abstract][Full Text] [Related]
29. Alpha-helix structure in Alzheimer's disease aggregates of tau-protein. Sadqi M; Hernández F; Pan U; Pérez M; Schaeberle MD; Avila J; Muñoz V Biochemistry; 2002 Jun; 41(22):7150-5. PubMed ID: 12033949 [TBL] [Abstract][Full Text] [Related]
30. The core of tau-paired helical filaments studied by scanning transmission electron microscopy and limited proteolysis. von Bergen M; Barghorn S; Müller SA; Pickhardt M; Biernat J; Mandelkow EM; Davies P; Aebi U; Mandelkow E Biochemistry; 2006 May; 45(20):6446-57. PubMed ID: 16700555 [TBL] [Abstract][Full Text] [Related]
31. The protein-surfactant stoichiometry governs the conformational switching and amyloid nucleation kinetics of tau K18. Kaur J; Giri A; Bhattacharya M Eur Biophys J; 2020 Sep; 49(6):425-434. PubMed ID: 32691116 [TBL] [Abstract][Full Text] [Related]
32. Crystal structure of a conformational antibody that binds tau oligomers and inhibits pathological seeding by extracts from donors with Alzheimer's disease. Abskharon R; Seidler PM; Sawaya MR; Cascio D; Yang TP; Philipp S; Williams CK; Newell KL; Ghetti B; DeTure MA; Dickson DW; Vinters HV; Felgner PL; Nakajima R; Glabe CG; Eisenberg DS J Biol Chem; 2020 Jul; 295(31):10662-10676. PubMed ID: 32493775 [TBL] [Abstract][Full Text] [Related]
33. Distinct microscopic mechanisms for the accelerated aggregation of pathogenic Tau mutants revealed by kinetic analysis. Yao QQ; Hong L; Wu S; Perrett S Phys Chem Chem Phys; 2020 Apr; 22(14):7241-7249. PubMed ID: 32207466 [TBL] [Abstract][Full Text] [Related]
34. Hsp40s play complementary roles in the prevention of tau amyloid formation. Irwin R; Faust O; Petrovic I; Wolf SG; Hofmann H; Rosenzweig R Elife; 2021 Aug; 10():. PubMed ID: 34369377 [TBL] [Abstract][Full Text] [Related]
35. Fibrils with parallel in-register structure constitute a major class of amyloid fibrils: molecular insights from electron paramagnetic resonance spectroscopy. Margittai M; Langen R Q Rev Biophys; 2008; 41(3-4):265-97. PubMed ID: 19079806 [TBL] [Abstract][Full Text] [Related]
36. Cryo-EM structures of tau filaments from Alzheimer's disease. Fitzpatrick AWP; Falcon B; He S; Murzin AG; Murshudov G; Garringer HJ; Crowther RA; Ghetti B; Goedert M; Scheres SHW Nature; 2017 Jul; 547(7662):185-190. PubMed ID: 28678775 [TBL] [Abstract][Full Text] [Related]
37. β-Sheet core of tau paired helical filaments revealed by solid-state NMR. Daebel V; Chinnathambi S; Biernat J; Schwalbe M; Habenstein B; Loquet A; Akoury E; Tepper K; Müller H; Baldus M; Griesinger C; Zweckstetter M; Mandelkow E; Vijayan V; Lange A J Am Chem Soc; 2012 Aug; 134(34):13982-9. PubMed ID: 22862303 [TBL] [Abstract][Full Text] [Related]
39. The twisted tauopathies: surface interactions of helically patterned filaments seen in alzheimer's disease and elsewhere. Rochman ND; Sun SX Soft Matter; 2016 Jan; 12(3):779-89. PubMed ID: 26526630 [TBL] [Abstract][Full Text] [Related]
40. Integrating in vitro and in silico approaches to evaluate the "dual functionality" of palmatine chloride in inhibiting and disassembling Tau-derived VQIVYK peptide fibrils. Haj E; Losev Y; Guru KrishnaKumar V; Pichinuk E; Engel H; Raveh A; Gazit E; Segal D Biochim Biophys Acta Gen Subj; 2018 Jul; 1862(7):1565-1575. PubMed ID: 29634991 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]