These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
10. Genetic map construction and QTL mapping of resistance to blackleg (Leptosphaeria maculans) disease in Australian canola (Brassica napus L.) cultivars. Kaur S; Cogan NO; Ye G; Baillie RC; Hand ML; Ling AE; McGearey AK; Kaur J; Hopkins CJ; Todorovic M; Mountford H; Edwards D; Batley J; Burton W; Salisbury P; Gororo N; Marcroft S; Kearney G; Smith KF; Forster JW; Spangenberg GC Theor Appl Genet; 2009 Dec; 120(1):71-83. PubMed ID: 19821065 [TBL] [Abstract][Full Text] [Related]
11. Meta-analysis of GWAS in canola blackleg (Leptosphaeria maculans) disease traits demonstrates increased power from imputed whole-genome sequence. Fikere M; Barbulescu DM; Malmberg MM; Spangenberg GC; Cogan NOI; Daetwyler HD Sci Rep; 2020 Aug; 10(1):14300. PubMed ID: 32868838 [TBL] [Abstract][Full Text] [Related]
12. Multi-environment QTL studies suggest a role for cysteine-rich protein kinase genes in quantitative resistance to blackleg disease in Brassica napus. Larkan NJ; Raman H; Lydiate DJ; Robinson SJ; Yu F; Barbulescu DM; Raman R; Luckett DJ; Burton W; Wratten N; Salisbury PA; Rimmer SR; Borhan MH BMC Plant Biol; 2016 Aug; 16(1):183. PubMed ID: 27553246 [TBL] [Abstract][Full Text] [Related]
13. Identification and mapping of a novel blackleg resistance locus LepR4 in the progenies from Brassica napus × B. rapa subsp. sylvestris. Yu F; Gugel RK; Kutcher HR; Peng G; Rimmer SR Theor Appl Genet; 2013 Feb; 126(2):307-15. PubMed ID: 22733446 [TBL] [Abstract][Full Text] [Related]
15. Effective Genomic Selection in a Narrow-Genepool Crop with Low-Density Markers: Asian Rapeseed as an Example. Werner CR; Voss-Fels KP; Miller CN; Qian W; Hua W; Guan CY; Snowdon RJ; Qian L Plant Genome; 2018 Jul; 11(2):. PubMed ID: 30025015 [TBL] [Abstract][Full Text] [Related]
16. Multi-year linkage and association mapping confirm the high number of genomic regions involved in oilseed rape quantitative resistance to blackleg. Kumar V; Paillard S; Fopa-Fomeju B; Falentin C; Deniot G; Baron C; Vallée P; Manzanares-Dauleux MJ; Delourme R Theor Appl Genet; 2018 Aug; 131(8):1627-1643. PubMed ID: 29728747 [TBL] [Abstract][Full Text] [Related]
17. SNP markers-based map construction and genome-wide linkage analysis in Brassica napus. Raman H; Dalton-Morgan J; Diffey S; Raman R; Alamery S; Edwards D; Batley J Plant Biotechnol J; 2014 Sep; 12(7):851-60. PubMed ID: 24698362 [TBL] [Abstract][Full Text] [Related]
18. Genomic prediction and GWAS of yield, quality and disease-related traits in spring barley and winter wheat. Tsai HY; Janss LL; Andersen JR; Orabi J; Jensen JD; Jahoor A; Jensen J Sci Rep; 2020 Feb; 10(1):3347. PubMed ID: 32099054 [TBL] [Abstract][Full Text] [Related]
19. Identification of two blackleg resistance genes and fine mapping of one of these two genes in a Brassica napus canola cultivar 'Surpass 400'. Long Y; Wang Z; Sun Z; Fernando DW; McVetty PB; Li G Theor Appl Genet; 2011 Apr; 122(6):1223-31. PubMed ID: 21258998 [TBL] [Abstract][Full Text] [Related]
20. Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous non-reciprocal transposition in Brassica napus L. Zhao J; Udall JA; Quijada PA; Grau CR; Meng J; Osborn TC Theor Appl Genet; 2006 Feb; 112(3):509-16. PubMed ID: 16333614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]