These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 30025031)

  • 1. Simulated Soil Organic Carbon Changes in Maryland Are Affected by Tillage, Climate Change, and Crop Yield.
    Cavigelli MA; Nash PR; Gollany HT; Rasmann C; Polumsky RW; Le AN; Conklin AE
    J Environ Qual; 2018 Jul; 47(4):588-595. PubMed ID: 30025031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulating Soil Organic Carbon Responses to Cropping Intensity, Tillage, and Climate Change in Pacific Northwest Dryland.
    Gollany HT; Polumsky RW
    J Environ Qual; 2018 Jul; 47(4):625-634. PubMed ID: 30025049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulated Soil Organic Carbon Responses to Crop Rotation, Tillage, and Climate Change in North Dakota.
    Nash PR; Gollany HT; Liebig MA; Halvorson JJ; Archer DW; Tanaka DL
    J Environ Qual; 2018 Jul; 47(4):654-662. PubMed ID: 30025045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soil Carbon Response to Projected Climate Change in the US Western Corn Belt.
    Wienhold BJ; Jin VL; Schmer MR; Varvel GE
    J Environ Qual; 2018 Jul; 47(4):704-709. PubMed ID: 30025056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CQESTR-Simulated Response of Soil Organic Carbon to Management, Yield, and Climate Change in the Northern Great Plains Region.
    Nash PR; Gollany HT; Sainju UM
    J Environ Qual; 2018 Jul; 47(4):674-683. PubMed ID: 30025061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulated Soil Organic Carbon Response to Tillage, Yield, and Climate Change in the Southeastern Coastal Plains.
    Nash PR; Gollany HT; Novak JM; Bauer PJ; Hunt PG; Karlen DL
    J Environ Qual; 2018 Jul; 47(4):663-673. PubMed ID: 30025032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts of climate variability and adaptation strategies on crop yields and soil organic carbon in the US Midwest.
    Liu L; Basso B
    PLoS One; 2020; 15(1):e0225433. PubMed ID: 31990907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implications of Observed and Simulated Soil Carbon Sequestration for Management Options in Corn-based Rotations.
    Dell CJ; Gollany HT; Adler PR; Skinner RH; Polumsky RW
    J Environ Qual; 2018 Jul; 47(4):617-624. PubMed ID: 30025046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulating soil C dynamics under intensive agricultural systems and climate change scenarios in the Matopiba region, Brazil.
    Santos RS; Zhang Y; Cotrufo MF; Hong M; Oliveira DMS; Damian JM; Cerri CEP
    J Environ Manage; 2023 Dec; 347():119149. PubMed ID: 37783087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term impact of conservation agriculture and diversified maize rotations on carbon pools and stocks, mineral nitrogen fractions and nitrous oxide fluxes in inceptisol of India.
    Parihar CM; Parihar MD; Sapkota TB; Nanwal RK; Singh AK; Jat SL; Nayak HS; Mahala DM; Singh LK; Kakraliya SK; Stirling CM; Jat ML
    Sci Total Environ; 2018 Nov; 640-641():1382-1392. PubMed ID: 30021305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can conservation agriculture mitigate climate change and reduce environmental impacts for intensive cropping systems in North China Plain?
    Zhang H; Hobbie EA; Feng P; Niu L; Hu K
    Sci Total Environ; 2022 Feb; 806(Pt 3):151194. PubMed ID: 34699820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling Regional Effects of Climate Change on Soil Organic Carbon in Spain.
    Jebari A; Del Prado A; Pardo G; Rodríguez Martín JA; Álvaro-Fuentes J
    J Environ Qual; 2018 Jul; 47(4):644-653. PubMed ID: 30025039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term cropping system effects on carbon sequestration in eastern Oregon.
    Machado S; Rhinhart K; Petrie S
    J Environ Qual; 2006; 35(4):1548-53. PubMed ID: 16825475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Residue retention promotes soil carbon accumulation in minimum tillage systems: Implications for conservation agriculture.
    Li Y; Li Z; Chang SX; Cui S; Jagadamma S; Zhang Q; Cai Y
    Sci Total Environ; 2020 Oct; 740():140147. PubMed ID: 32563000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon sequestration in dryland soils and plant residue as influenced by tillage and crop rotation.
    Sainju UM; Lenssen A; Caesar-Thonthat T; Waddell J
    J Environ Qual; 2006; 35(4):1341-7. PubMed ID: 16825454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unexpected increases in soil carbon eventually fell in low rainfall farming systems.
    Badgery WB; Mwendwa JM; Anwar MR; Simmons AT; Broadfoot KM; Rohan M; Singh BP
    J Environ Manage; 2020 May; 261():110192. PubMed ID: 32148267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Modelling the changes of soil organic carbon under different management practices using Daycent model in North China].
    Zhang X; Xie LY; Guo LP; Fan JW
    Ying Yong Sheng Tai Xue Bao; 2016 Feb; 27(2):539-48. PubMed ID: 27396129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term Trends in Corn Yields and Soil Carbon under Diversified Crop Rotations.
    Jarecki M; Grant B; Smith W; Deen B; Drury C; VanderZaag A; Qian B; Yang J; Wagner-Riddle C
    J Environ Qual; 2018 Jul; 47(4):635-643. PubMed ID: 30025058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stagnating crop yields: An overlooked risk for the carbon balance of agricultural soils?
    Wiesmeier M; Hübner R; Kögel-Knabner I
    Sci Total Environ; 2015 Dec; 536():1045-1051. PubMed ID: 26235605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crop rotations for increased soil carbon: perenniality as a guiding principle.
    King AE; Blesh J
    Ecol Appl; 2018 Jan; 28(1):249-261. PubMed ID: 29112790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.