These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 30025058)
1. Long-term Trends in Corn Yields and Soil Carbon under Diversified Crop Rotations. Jarecki M; Grant B; Smith W; Deen B; Drury C; VanderZaag A; Qian B; Yang J; Wagner-Riddle C J Environ Qual; 2018 Jul; 47(4):635-643. PubMed ID: 30025058 [TBL] [Abstract][Full Text] [Related]
2. Assessing the impacts of diversified crop rotation systems on yields and nitrous oxide emissions in Canada using the DNDC model. Jiang R; Yang JY; Drury CF; He W; Smith WN; Grant BB; He P; Zhou W Sci Total Environ; 2021 Mar; 759():143433. PubMed ID: 33198998 [TBL] [Abstract][Full Text] [Related]
3. Implications of Observed and Simulated Soil Carbon Sequestration for Management Options in Corn-based Rotations. Dell CJ; Gollany HT; Adler PR; Skinner RH; Polumsky RW J Environ Qual; 2018 Jul; 47(4):617-624. PubMed ID: 30025046 [TBL] [Abstract][Full Text] [Related]
4. Nitrogen use and carbon sequestered by corn rotations in the northern corn belt, U.S. Pikul JL; Schumacher TE; Vigil M ScientificWorldJournal; 2001 Sep; 1 Suppl 2():707-13. PubMed ID: 12806069 [TBL] [Abstract][Full Text] [Related]
5. Simulated Soil Organic Carbon Response to Tillage, Yield, and Climate Change in the Southeastern Coastal Plains. Nash PR; Gollany HT; Novak JM; Bauer PJ; Hunt PG; Karlen DL J Environ Qual; 2018 Jul; 47(4):663-673. PubMed ID: 30025032 [TBL] [Abstract][Full Text] [Related]
6. Soil Carbon Response to Projected Climate Change in the US Western Corn Belt. Wienhold BJ; Jin VL; Schmer MR; Varvel GE J Environ Qual; 2018 Jul; 47(4):704-709. PubMed ID: 30025056 [TBL] [Abstract][Full Text] [Related]
7. Simulating the influence of integrated crop-livestock systems on water yield at watershed scale. Pérez-Gutiérrez JD; Kumar S J Environ Manage; 2019 Jun; 239():385-394. PubMed ID: 30925408 [TBL] [Abstract][Full Text] [Related]
8. Nitrogen fertilizer effects on soil carbon balances in midwestern U.S. agricultural systems. Russell AE; Cambardella CA; Laird DA; Jaynes DB; Meek DW Ecol Appl; 2009 Jul; 19(5):1102-13. PubMed ID: 19688919 [TBL] [Abstract][Full Text] [Related]
9. Carbon footprint and net carbon gain of major long-term cropping systems under no-tillage. Bansal S; Yin X; Schneider L; Sykes V; Jagadamma S; Lee J J Environ Manage; 2022 Apr; 307():114505. PubMed ID: 35085973 [TBL] [Abstract][Full Text] [Related]
10. Long-term impact of conservation agriculture and diversified maize rotations on carbon pools and stocks, mineral nitrogen fractions and nitrous oxide fluxes in inceptisol of India. Parihar CM; Parihar MD; Sapkota TB; Nanwal RK; Singh AK; Jat SL; Nayak HS; Mahala DM; Singh LK; Kakraliya SK; Stirling CM; Jat ML Sci Total Environ; 2018 Nov; 640-641():1382-1392. PubMed ID: 30021305 [TBL] [Abstract][Full Text] [Related]
11. Increasing crop diversity mitigates weather variations and improves yield stability. Gaudin AC; Tolhurst TN; Ker AP; Janovicek K; Tortora C; Martin RC; Deen W PLoS One; 2015; 10(2):e0113261. PubMed ID: 25658914 [TBL] [Abstract][Full Text] [Related]
12. Simulating Soil Organic Carbon Responses to Cropping Intensity, Tillage, and Climate Change in Pacific Northwest Dryland. Gollany HT; Polumsky RW J Environ Qual; 2018 Jul; 47(4):625-634. PubMed ID: 30025049 [TBL] [Abstract][Full Text] [Related]
13. Simulated Soil Organic Carbon Responses to Crop Rotation, Tillage, and Climate Change in North Dakota. Nash PR; Gollany HT; Liebig MA; Halvorson JJ; Archer DW; Tanaka DL J Environ Qual; 2018 Jul; 47(4):654-662. PubMed ID: 30025045 [TBL] [Abstract][Full Text] [Related]
14. Residual soil nitrate content and profitability of five cropping systems in northwest Iowa. De Haan RL; Schuiteman MA; Vos RJ PLoS One; 2017; 12(3):e0171994. PubMed ID: 28248976 [TBL] [Abstract][Full Text] [Related]
15. Simulated Soil Organic Carbon Changes in Maryland Are Affected by Tillage, Climate Change, and Crop Yield. Cavigelli MA; Nash PR; Gollany HT; Rasmann C; Polumsky RW; Le AN; Conklin AE J Environ Qual; 2018 Jul; 47(4):588-595. PubMed ID: 30025031 [TBL] [Abstract][Full Text] [Related]
16. Crop rotations for increased soil carbon: perenniality as a guiding principle. King AE; Blesh J Ecol Appl; 2018 Jan; 28(1):249-261. PubMed ID: 29112790 [TBL] [Abstract][Full Text] [Related]
17. [Response of Soil Fungal Communities in Diversified Rotations of Wheat and Different Crops]. Jin HY; Yue JQ; Yan YQ; Zhang DQ; Yang C; Zhang SY; Li XD; Shao YH; Fang BT; Wang HF; Qin F Huan Jing Ke Xue; 2022 Jun; 43(6):3338-3347. PubMed ID: 35686804 [TBL] [Abstract][Full Text] [Related]
18. Gypsum, crop rotation, and cover crop impacts on soil organic carbon and biological dynamics in rainfed transitional no-till corn-soybean systems. Islam KR; Dick WA; Watts DB; Gonzalez JM; Fausey NR; Flanagan DC; Reeder RC; VanToai TT; Batte MT PLoS One; 2022; 17(9):e0275198. PubMed ID: 36166439 [TBL] [Abstract][Full Text] [Related]
19. Economics, energy, and environmental assessment of diversified crop rotations in sub-Himalayas of India. Singh RJ; Meena RL; Sharma NK; Kumar S; Kumar K; Kumar D Environ Monit Assess; 2016 Feb; 188(2):79. PubMed ID: 26739009 [TBL] [Abstract][Full Text] [Related]