These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 30025316)
21. Magnetite as an enhancer in methanogenic degradation of volatile fatty acids under ammonia-stressed condition. Lee J; Koo T; Yulisa A; Hwang S J Environ Manage; 2019 Jul; 241():418-426. PubMed ID: 31035235 [TBL] [Abstract][Full Text] [Related]
22. Homoacetogenesis as the alternative pathway for H2 sink during thermophilic anaerobic degradation of butyrate under suppressed methanogenesis. Siriwongrungson V; Zeng RJ; Angelidaki I Water Res; 2007 Oct; 41(18):4204-10. PubMed ID: 17618671 [TBL] [Abstract][Full Text] [Related]
23. Enhancing proton-coupled electron transfer drives efficient methanogenesis in anaerobic digestion. Liu H; Xu Y; Li L; Li X; Dai X Water Res; 2024 Aug; 266():122331. PubMed ID: 39208569 [TBL] [Abstract][Full Text] [Related]
24. Response of syntrophic aggregates to the magnetite loss in continuous anaerobic bioreactor. Wang C; Wang C; Jin L; Lu D; Chen H; Zhu W; Xu X; Zhu L Water Res; 2019 Nov; 164():114925. PubMed ID: 31382155 [TBL] [Abstract][Full Text] [Related]
25. Control of Interspecies Electron Flow during Anaerobic Digestion: Significance of Formate Transfer versus Hydrogen Transfer during Syntrophic Methanogenesis in Flocs. Thiele JH; Zeikus JG Appl Environ Microbiol; 1988 Jan; 54(1):20-29. PubMed ID: 16347526 [TBL] [Abstract][Full Text] [Related]
26. Predominant contribution of syntrophic acetate oxidation to thermophilic methane formation at high acetate concentrations. Hao LP; Lü F; He PJ; Li L; Shao LM Environ Sci Technol; 2011 Jan; 45(2):508-13. PubMed ID: 21162559 [TBL] [Abstract][Full Text] [Related]
27. Magnetic porous microspheres altering interfacial thermodynamics of sewage sludge to drive metabolic cooperation for efficient methanogenesis. Geng H; Xu Y; Liu R; Xu J; Li X; Yang D; Dai X Water Res; 2024 Sep; 261():122022. PubMed ID: 39002417 [TBL] [Abstract][Full Text] [Related]
29. Thermodynamic analysis of direct interspecies electron transfer in syntrophic methanogenesis based on the optimized energy distribution. Liu Y; Gu M; Yin Q; Du J; Wu G Bioresour Technol; 2020 Feb; 297():122345. PubMed ID: 31706892 [TBL] [Abstract][Full Text] [Related]
30. Thermodynamic restrictions determine ammonia tolerance of functional floras during anaerobic digestion. Liu F; Zhang Y; Zhang Y; Yang J; Shen W; Yang S; Quan Z; Liu B; Yuan Z; Zhang Y Bioresour Technol; 2024 Jan; 391(Pt A):129919. PubMed ID: 37884096 [TBL] [Abstract][Full Text] [Related]
31. Influence of thermophilic aerobic digestion as a sludge pre-treatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process. Jang HM; Cho HU; Park SK; Ha JH; Park JM Water Res; 2014 Jan; 48():1-14. PubMed ID: 23871253 [TBL] [Abstract][Full Text] [Related]
32. Effect of proton pump inhibitor on microbial community, function, and kinetics in anaerobic digestion with ammonia stress. Yu D; Zhang Q; De Jaegher B; Liu J; Sui Q; Zheng X; Wei Y Bioresour Technol; 2021 Jan; 319():124118. PubMed ID: 32957047 [TBL] [Abstract][Full Text] [Related]
33. Evidence of anaerobic syntrophic acetate oxidation in biogas batch reactors by analysis of 13C carbon isotopes. Polag D; Heuwinkel H; Laukenmann S; Greule M; Keppler F Isotopes Environ Health Stud; 2013; 49(3):365-77. PubMed ID: 23781862 [TBL] [Abstract][Full Text] [Related]
34. Red mud enhances methanogenesis with the simultaneous improvement of hydrolysis-acidification and electrical conductivity. Ye J; Hu A; Ren G; Zhou T; Zhang G; Zhou S Bioresour Technol; 2018 Jan; 247():131-137. PubMed ID: 28946086 [TBL] [Abstract][Full Text] [Related]
35. Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion. Zhao Z; Zhang Y; Wang L; Quan X Sci Rep; 2015 Jun; 5():11094. PubMed ID: 26057581 [TBL] [Abstract][Full Text] [Related]
37. Conductive Fe3O4 Nanoparticles Accelerate Syntrophic Methane Production from Butyrate Oxidation in Two Different Lake Sediments. Zhang J; Lu Y Front Microbiol; 2016; 7():1316. PubMed ID: 27597850 [TBL] [Abstract][Full Text] [Related]
38. Inhibition mitigation and ecological mechanism of mesophilic methanogenesis triggered by supplement of ferroferric oxide in sulfate-containing systems. Liu Y; Gu M; Yin Q; Wu G Bioresour Technol; 2019 Sep; 288():121546. PubMed ID: 31152955 [TBL] [Abstract][Full Text] [Related]
39. Iron oxides alter methanogenic pathways of acetate in production water of high-temperature petroleum reservoir. Pan P; Hong B; Mbadinga SM; Wang LY; Liu JF; Yang SZ; Gu JD; Mu BZ Appl Microbiol Biotechnol; 2017 Sep; 101(18):7053-7063. PubMed ID: 28730409 [TBL] [Abstract][Full Text] [Related]
40. Extracellular-proton-transfer driving high energy-conserving methanogenesis in anaerobic digestion. Liu H; Xu Y; Li X; Wang H; Liu R; Dai X Water Res; 2024 Sep; 262():122102. PubMed ID: 39018580 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]