These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 30025365)
41. Fe3O4 and MnO2 assembled on honeycomb briquette cinders (HBC) for arsenic removal from aqueous solutions. Zhu J; Baig SA; Sheng T; Lou Z; Wang Z; Xu X J Hazard Mater; 2015 Apr; 286():220-8. PubMed ID: 25585269 [TBL] [Abstract][Full Text] [Related]
42. Immobilization of 2,2'-dipyridyl onto bentonite and its adsorption behavior of copper(II) ions. Erdem B; Ozcan A; Gök O; Ozcan AS J Hazard Mater; 2009 Apr; 163(1):418-26. PubMed ID: 18703279 [TBL] [Abstract][Full Text] [Related]
43. Removal of direct red 12B and methylene blue from water by adsorption onto Fe (III)/Cr (III) hydroxide, an industrial solid waste. Namasivayam C; Sumithra S J Environ Manage; 2005 Feb; 74(3):207-15. PubMed ID: 15644261 [TBL] [Abstract][Full Text] [Related]
44. Scavenging behaviour of meranti sawdust in the removal of methylene blue from aqueous solution. Ahmad A; Rafatullah M; Sulaiman O; Ibrahim MH; Hashim R J Hazard Mater; 2009 Oct; 170(1):357-65. PubMed ID: 19464117 [TBL] [Abstract][Full Text] [Related]
45. Pectin microgel particles as high adsorption rate material for methylene blue: Performance, equilibrium, kinetic, mechanism and regeneration studies. Yu LL; Jiang LN; Wang SY; Sun MM; Li DQ; Du GM Int J Biol Macromol; 2018 Jun; 112():383-389. PubMed ID: 29408678 [TBL] [Abstract][Full Text] [Related]
46. Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: coconut (Cocos nucifera) bunch waste. Hameed BH; Mahmoud DK; Ahmad AL J Hazard Mater; 2008 Oct; 158(1):65-72. PubMed ID: 18308467 [TBL] [Abstract][Full Text] [Related]
47. Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: equilibrium, thermodynamics, kinetics and regeneration studies. Chieng HI; Lim LB; Priyantha N Environ Technol; 2015; 36(1-4):86-97. PubMed ID: 25409587 [TBL] [Abstract][Full Text] [Related]
48. Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay. Tahir SS; Rauf N Chemosphere; 2006 Jun; 63(11):1842-8. PubMed ID: 16380152 [TBL] [Abstract][Full Text] [Related]
49. Adsorptive removal of methylene blue by tea waste. Uddin MT; Islam MA; Mahmud S; Rukanuzzaman M J Hazard Mater; 2009 May; 164(1):53-60. PubMed ID: 18801614 [TBL] [Abstract][Full Text] [Related]
50. Adsorption of acid dye onto organobentonite. Baskaralingam P; Pulikesi M; Elango D; Ramamurthi V; Sivanesan S J Hazard Mater; 2006 Feb; 128(2-3):138-44. PubMed ID: 16360263 [TBL] [Abstract][Full Text] [Related]
51. Removal of fluoride from aqueous solution using granular acid-treated bentonite (GHB): batch and column studies. Ma Y; Shi F; Zheng X; Ma J; Gao C J Hazard Mater; 2011 Jan; 185(2-3):1073-80. PubMed ID: 21044817 [TBL] [Abstract][Full Text] [Related]
52. Peach gum for efficient removal of methylene blue and methyl violet dyes from aqueous solution. Zhou L; Huang J; He B; Zhang F; Li H Carbohydr Polym; 2014 Jan; 101():574-81. PubMed ID: 24299813 [TBL] [Abstract][Full Text] [Related]
53. Hybrid process of adsorption and electrochemically based green regeneration of bentonite clay for ofloxacin and ciprofloxacin removal. Antonelli R; Malpass GRP; da Silva MGC; Vieira MGA Environ Sci Pollut Res Int; 2023 Apr; 30(18):53648-53661. PubMed ID: 36862291 [TBL] [Abstract][Full Text] [Related]
54. Adsorption of lead(II) ions onto 8-hydroxy quinoline-immobilized bentonite. Ozcan AS; Gök O; Ozcan A J Hazard Mater; 2009 Jan; 161(1):499-509. PubMed ID: 18508194 [TBL] [Abstract][Full Text] [Related]
55. Lanthanum (III) encapsulated chitosan-montmorillonite composite for the adsorptive removal of phosphate ions from aqueous solution. Thagira Banu H; Karthikeyan P; Meenakshi S Int J Biol Macromol; 2018 Jun; 112():284-293. PubMed ID: 29378275 [TBL] [Abstract][Full Text] [Related]
56. Novel synthesis of a versatile magnetic adsorbent derived from corncob for dye removal. Ma H; Li JB; Liu WW; Miao M; Cheng BJ; Zhu SW Bioresour Technol; 2015 Aug; 190():13-20. PubMed ID: 25919932 [TBL] [Abstract][Full Text] [Related]
57. Silkworm exuviae--a new non-conventional and low-cost adsorbent for removal of methylene blue from aqueous solutions. Chen H; Zhao J; Dai G J Hazard Mater; 2011 Feb; 186(2-3):1320-7. PubMed ID: 21185648 [TBL] [Abstract][Full Text] [Related]
58. Removal of lead and zinc ions from water by low cost adsorbents. Mishra PC; Patel RK J Hazard Mater; 2009 Aug; 168(1):319-25. PubMed ID: 19299083 [TBL] [Abstract][Full Text] [Related]
59. Continuous water treatment by adsorption and electrochemical regeneration. Mohammed FM; Roberts EP; Hill A; Campen AK; Brown NW Water Res; 2011 May; 45(10):3065-74. PubMed ID: 21511325 [TBL] [Abstract][Full Text] [Related]
60. Removal of phosphate from water using six Al-, Fe-, and Al-Fe-modified bentonite adsorbents. Shanableh AM; Elsergany MM J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(2):223-31. PubMed ID: 23043345 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]