These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 300254)

  • 1. Spin-lattice relaxation times for 13C in isotope-enriched glycine accumulated in frog muscle.
    Neville MC; Wyssbrod HR
    Biophys J; 1977 Mar; 17(3):255-67. PubMed ID: 300254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tryptophan sidechain dynamics in hydrophobic oligopeptides determined by use of 13C nuclear magnetic resonance spectroscopy.
    Weaver AJ; Kemple MD; Prendergast FG
    Biophys J; 1988 Jul; 54(1):1-15. PubMed ID: 3416021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscosity of concentrated solutions and of human erythrocyte cytoplasm determined from NMR measurement of molecular correlation times. The dependence of viscosity on cell volume.
    Endre ZH; Kuchel PW
    Biophys Chem; 1986 Aug; 24(3):337-56. PubMed ID: 3768476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The separation of phosphocreatine from creatine, and pH determination in frog muscle by natural abundance 13C-NMR.
    Arús C; Chang YC; Bárány M
    Biochim Biophys Acta; 1985 Jan; 844(1):91-3. PubMed ID: 3871336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 13C nuclear magnetic resonance relaxation-derived psi, phi bond rotational energy barriers and rotational restrictions for glycine 13C alpha-methylenes in a GXX-repeat hexadecapeptide.
    Daragan VA; Kloczewiak MA; Mayo KH
    Biochemistry; 1993 Oct; 32(40):10580-90. PubMed ID: 8399202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel phenomena in the 13C NMR spectra of amino acids.
    Tian J; Yin Y
    Amino Acids; 2004 Mar; 26(2):175-81. PubMed ID: 15042448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulsed nuclear magnetic resonance study of 17-O, 2-D, and 1-H of water in frog striated muscle.
    Civan MM; Shporer M
    Biophys J; 1975 Apr; 15(4):299-306. PubMed ID: 1079145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intra-erythrocyte microviscosity and diffusion of specifically labelled [glycyl-alpha-13C]glutathione by using 13C n.m.r.
    Endre ZH; Chapman BE; Kuchel PW
    Biochem J; 1983 Dec; 216(3):655-60. PubMed ID: 6667261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton and deuteron relaxation of muscle water over wide ranges of resonance frequencies.
    Fung BM
    Biophys J; 1977 May; 18(2):235-9. PubMed ID: 861361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino acid accumulation in frog muscle. I. Steady-state glycine accumulation at 0 degrees C.
    Neville MC
    Biochim Biophys Acta; 1973 Jan; 291(1):287-301. PubMed ID: 4539741
    [No Abstract]   [Full Text] [Related]  

  • 11. DNA duplex dynamics: NMR relaxation studies of a decamer with uniformly 13C-labeled purine nucleotides.
    Kojima C; Ono A; Kainosho M; James TL
    J Magn Reson; 1998 Dec; 135(2):310-33. PubMed ID: 9878461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amide proton spin-lattice relaxation in polypeptides. A field-dependence study of the proton and nitrogen dipolar interactions in alumichrome.
    Llinás M; Klein MP; Wüthrich K
    Biophys J; 1978 Dec; 24(3):849-62. PubMed ID: 737289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solute concentration gradients in frog muscles at 0 degree C: active transport or adsorption?
    Neville MC
    Science; 1972 Apr; 176(4032):302-3. PubMed ID: 4537041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein expression, selective isotopic labeling, and analysis of hyperfine-shifted NMR signals of Anabaena 7120 vegetative [2Fe-2S]ferredoxin.
    Cheng H; Westler WM; Xia B; Oh BH; Markley JL
    Arch Biochem Biophys; 1995 Jan; 316(1):619-34. PubMed ID: 7840674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of proton spin relaxation in muscle tissue using nuclear magnetic resonance spin grouping and exchange analysis.
    Sobol WT; Cameron IG; Inch WR; Pintar MM
    Biophys J; 1986 Jul; 50(1):181-91. PubMed ID: 3730502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulsed nuclear magnetic resonance study of 39K in frog striated muscle.
    Civan MM; McDonald GG; Pring M; Shporer M
    Biophys J; 1976 Dec; 16(12):1385-98. PubMed ID: 1086686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An NMR study of the origin of dioxygen-induced spin-lattice relaxation enhancement and chemical shift perturbation.
    Prosser RS; Luchette PA
    J Magn Reson; 2004 Dec; 171(2):225-32. PubMed ID: 15546748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton nuclear magnetic resonance relaxation measurements in frog muscle.
    Finch ED; Homer LD
    Biophys J; 1974 Dec; 14(12):907-21. PubMed ID: 4547668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular space of frog skeletal muscle in vivo and in vitro: relation to proton magnetic resonance relaxation times.
    Neville MC; White S
    J Physiol; 1979 Mar; 288():71-83. PubMed ID: 313983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear magnetic resonance spectroscopy: reinvestigation of carbon-13 spin-lattice relaxation time measurements of amino acids.
    Pearson H; Gust D; Armitage IM; Huber H; Roberts JD; Stark RE; Vold RR; Vold RL
    Proc Natl Acad Sci U S A; 1975 Apr; 72(4):1599-601. PubMed ID: 165516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.