These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 30025531)
1. Improving results in rat fracture models: enhancing the efficacy of biomechanical testing by a modification of the experimental setup. Prodinger PM; Bürklein D; Foehr P; Kreutzer K; Pilge H; Schmitt A; Eisenhart-Rothe RV; Burgkart R; Bissinger O; Tischer T BMC Musculoskelet Disord; 2018 Jul; 19(1):243. PubMed ID: 30025531 [TBL] [Abstract][Full Text] [Related]
2. Whole bone testing in small animals: systematic characterization of the mechanical properties of different rodent bones available for rat fracture models. Prodinger PM; Foehr P; Bürklein D; Bissinger O; Pilge H; Kreutzer K; von Eisenhart-Rothe R; Tischer T Eur J Med Res; 2018 Feb; 23(1):8. PubMed ID: 29444703 [TBL] [Abstract][Full Text] [Related]
3. Biomechanical evaluation of dual-energy X-ray absorptiometry for predicting fracture loads of the infant femur for injury investigation: an in vitro porcine model. Pierce MC; Valdevit A; Anderson L; Inoue N; Hauser DL J Orthop Trauma; 2000 Nov; 14(8):571-6. PubMed ID: 11149504 [TBL] [Abstract][Full Text] [Related]
5. DXA and pQCT predict pertrochanteric and not femoral neck fracture load in a human side-impact fracture model. Gebauer M; Stark O; Vettorazzi E; Grifka J; Püschel K; Amling M; Beckmann J J Orthop Res; 2014 Jan; 32(1):31-8. PubMed ID: 24019186 [TBL] [Abstract][Full Text] [Related]
6. Rivaroxaban does not impair fracture healing in a rat femur fracture model: an experimental study. Klüter T; Weuster M; Brüggemann S; Menzdorf L; Fitschen-Oestern S; Steubesand N; Acil Y; Pufe T; Varoga D; Seekamp A; Lippross S BMC Musculoskelet Disord; 2015 Apr; 16():79. PubMed ID: 25886252 [TBL] [Abstract][Full Text] [Related]
7. Prediction of Hip Failure Load: In Vitro Study of 80 Femurs Using Three Imaging Methods and Finite Element Models-The European Fracture Study (EFFECT). Pottecher P; Engelke K; Duchemin L; Museyko O; Moser T; Mitton D; Vicaut E; Adams J; Skalli W; Laredo JD; Bousson V Radiology; 2016 Sep; 280(3):837-47. PubMed ID: 27077380 [TBL] [Abstract][Full Text] [Related]
8. The effects of visceral obesity and androgens on bone: trenbolone protects against loss of femoral bone mineral density and structural strength in viscerally obese and testosterone-deficient male rats. Donner DG; Elliott GE; Beck BR; Forwood MR; Du Toit EF Osteoporos Int; 2016 Mar; 27(3):1073-1082. PubMed ID: 26438310 [TBL] [Abstract][Full Text] [Related]
9. Short-term muscle atrophy caused by botulinum toxin-A local injection impairs fracture healing in the rat femur. Hao Y; Ma Y; Wang X; Jin F; Ge S J Orthop Res; 2012 Apr; 30(4):574-80. PubMed ID: 21919046 [TBL] [Abstract][Full Text] [Related]
10. Hydrogel-based Delivery of rhBMP-2 Improves Healing of Large Bone Defects Compared With Autograft. Krishnan L; Priddy LB; Esancy C; Li MT; Stevens HY; Jiang X; Tran L; Rowe DW; Guldberg RE Clin Orthop Relat Res; 2015 Sep; 473(9):2885-97. PubMed ID: 25917422 [TBL] [Abstract][Full Text] [Related]
11. In situ femoral dual-energy X-ray absorptiometry related to ash weight, bone size and density, and its relationship with mechanical failure loads of the proximal femur. Lochmüller EM; Miller P; Bürklein D; Wehr U; Rambeck W; Eckstein F Osteoporos Int; 2000; 11(4):361-7. PubMed ID: 10928227 [TBL] [Abstract][Full Text] [Related]
12. Bone stiffness in children: part II. Objectives criteria for children to assess healing during leg lengthening. Chotel F; Braillon P; Sailhan F; Gadeyne S; Gellon JO; Panczer G; Pedrini C; Berard J J Pediatr Orthop; 2008; 28(5):538-43. PubMed ID: 18580369 [TBL] [Abstract][Full Text] [Related]
13. The effect of head trauma on fracture healing: biomechanical testing and finite element analysis. Ozan F; Yıldız H; Bora OA; Pekedis M; Ay Coşkun G; Göre O Acta Orthop Traumatol Turc; 2010; 44(4):313-21. PubMed ID: 21252609 [TBL] [Abstract][Full Text] [Related]
14. Assessment of femoral neck strength by 3-dimensional X-ray absorptiometry. Le Bras A; Kolta S; Soubrane P; Skalli W; Roux C; Mitton D J Clin Densitom; 2006; 9(4):425-30. PubMed ID: 17097528 [TBL] [Abstract][Full Text] [Related]
15. Cement augmentation of the proximal femoral nail antirotation for the treatment of osteoporotic pertrochanteric fractures--a biomechanical cadaver study. Fensky F; Nüchtern JV; Kolb JP; Huber S; Rupprecht M; Jauch SY; Sellenschloh K; Püschel K; Morlock MM; Rueger JM; Lehmann W Injury; 2013 Jun; 44(6):802-7. PubMed ID: 23545113 [TBL] [Abstract][Full Text] [Related]
16. Mechanical torque measurement for in vivo quantification of bone strength in the proximal femur. Mueller MA; Hengg C; Hirschmann M; Schmid D; Sprecher C; Audigé L; Suhm N Injury; 2012 Oct; 43(10):1712-7. PubMed ID: 22795727 [TBL] [Abstract][Full Text] [Related]
17. Effects of loading rate on strength of the proximal femur. Courtney AC; Wachtel EF; Myers ER; Hayes WC Calcif Tissue Int; 1994 Jul; 55(1):53-8. PubMed ID: 7922790 [TBL] [Abstract][Full Text] [Related]
18. Quantitative measures of femoral fracture repair in rats derived by micro-computed tomography. Nyman JS; Munoz S; Jadhav S; Mansour A; Yoshii T; Mundy GR; Gutierrez GE J Biomech; 2009 May; 42(7):891-7. PubMed ID: 19281987 [TBL] [Abstract][Full Text] [Related]
19. Femur fracture biomechanics and morphology associated with torsional and bending loading conditions in an in vitro immature porcine model. Bertocci G; Thompson A; Pierce MC J Forensic Leg Med; 2017 Nov; 52():5-11. PubMed ID: 28772157 [TBL] [Abstract][Full Text] [Related]
20. [Evaluation of bone architecture and biomechanic properties by peripheral quantitative computed tomography in rats]. Xing XP; Xia WB; Meng XW; Zhou XY; Hu YY; Liu HC Zhonghua Yi Xue Za Zhi; 2003 May; 83(9):791-5. PubMed ID: 12899761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]