BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

488 related articles for article (PubMed ID: 30025566)

  • 1. The application of low-altitude near-infrared aerial photography for detecting clandestine burials using a UAV and low-cost unmodified digital camera.
    Evers R; Masters P
    Forensic Sci Int; 2018 Aug; 289():408-418. PubMed ID: 30025566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drone aerial imagery for the simulation of a neonate burial based on the geoforensic search strategy (GSS).
    Rocke B; Ruffell A; Donnelly L
    J Forensic Sci; 2021 Jul; 66(4):1506-1519. PubMed ID: 33576508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The detection of clandestine graves in an arid environment using thermal imaging deployed from an unmanned aerial vehicle.
    Alawadhi A; Eliopoulos C; Bezombes F
    J Forensic Sci; 2023 Jul; 68(4):1286-1291. PubMed ID: 37194428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring of simulated clandestine graves of victims using UAVs, GPR, electrical tomography and conductivity over 4-8 years post-burial to aid forensic search investigators in Colombia, South America.
    Molina CM; Wisniewski KD; Salamanca A; Saumett M; Rojas C; Gómez H; Baena A; Pringle JK
    Forensic Sci Int; 2024 Feb; 355():111919. PubMed ID: 38218100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monocular Vision System for Fixed Altitude Flight of Unmanned Aerial Vehicles.
    Huang KL; Chiu CC; Chiu SY; Teng YJ; Hao SS
    Sensors (Basel); 2015 Jul; 15(7):16848-65. PubMed ID: 26184213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using drone-mounted cameras for on-site body documentation: 3D mapping and active survey.
    Urbanová P; Jurda M; Vojtíšek T; Krajsa J
    Forensic Sci Int; 2017 Dec; 281():52-62. PubMed ID: 29101908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unmanned aerial vehicles for surveying marine fauna: assessing detection probability.
    Hodgson A; Peel D; Kelly N
    Ecol Appl; 2017 Jun; 27(4):1253-1267. PubMed ID: 28178755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Small unmanned aerial vehicles for low-altitude remote sensing and its application progress in ecology.].
    Sun ZY; Chen YQ; Yang L; Tang GL; Yuan SX; Lin ZW
    Ying Yong Sheng Tai Xue Bao; 2017 Feb; 28(2):528-536. PubMed ID: 29749161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting Wheat Powdery Mildew and Predicting Grain Yield Using Unmanned Aerial Photography.
    Liu W; Cao X; Fan J; Wang Z; Yan Z; Luo Y; West JS; Xu X; Zhou Y
    Plant Dis; 2018 Oct; 102(10):1981-1988. PubMed ID: 30125137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical resistivity survey to search for a recent clandestine burial of a homicide victim, UK.
    Pringle JK; Jervis JR
    Forensic Sci Int; 2010 Oct; 202(1-3):e1-7. PubMed ID: 20471188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustainable monitoring coverage of unmanned aerial vehicle photogrammetry according to wing type and image resolution.
    Park S; Lee H; Chon J
    Environ Pollut; 2019 Apr; 247():340-348. PubMed ID: 30690230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of latent bloodstains at fire scenes using reflected infrared photography.
    Bastide B; Porter G; Renshaw A
    Forensic Sci Int; 2019 Sep; 302():109874. PubMed ID: 31421438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The application of remote sensing for detecting mass graves: an experimental animal case study from Costa Rica.
    Kalacska ME; Bell LS; Sanchez-Azofeifa GA; Caelli T
    J Forensic Sci; 2009 Jan; 54(1):159-66. PubMed ID: 19120829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Deep Learning and Low-Cost RGB and Thermal Cameras to Detect Pedestrians in Aerial Images Captured by Multirotor UAV.
    de Oliveira DC; Wehrmeister MA
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30002290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The suitability of using domestic pigs (Sus spp.) as human proxies in the geophysical detection of clandestine graves.
    Berezowski V; Moffat I; Seckiner D; Crebert I; Ellis J; Mallett X
    J Forensic Sci; 2024 Jan; 69(1):316-328. PubMed ID: 37904624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring of beach litter by automatic interpretation of unmanned aerial vehicle images using the segmentation threshold method.
    Bao Z; Sha J; Li X; Hanchiso T; Shifaw E
    Mar Pollut Bull; 2018 Dec; 137():388-398. PubMed ID: 30503448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Configuration and specifications of an Unmanned Aerial Vehicle (UAV) for early site specific weed management.
    Torres-Sánchez J; López-Granados F; De Castro AI; Peña-Barragán JM
    PLoS One; 2013; 8(3):e58210. PubMed ID: 23483997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geophysical monitoring of simulated graves with resistivity, magnetic susceptibility, conductivity and GPR in Colombia, South America.
    Molina CM; Pringle JK; Saumett M; Evans GT
    Forensic Sci Int; 2016 Apr; 261():106-15. PubMed ID: 26921813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing optical remote sensing for grave detection.
    Silván-Cárdenas JL; Caccavari-Garza A; Quinto-Sánchez ME; Madrigal-Gómez JM; Coronado-Juárez E; Quiroz-Suarez D
    Forensic Sci Int; 2021 Dec; 329():111064. PubMed ID: 34736050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Survey and Insights into Unmanned Aerial-Vehicle-Based Detection and Documentation of Clandestine Graves and Human Remains.
    Murray B; Anderson DT; Wescott DJ; Moorhead R; Anderson MF
    Hum Biol; 2018 Jan; 90(1):45-61. PubMed ID: 30387383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.