These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 30025631)
1. Could increased understanding of foraging behavior help to predict the success of biological control? Mills NJ; Heimpel GE Curr Opin Insect Sci; 2018 Jun; 27():26-31. PubMed ID: 30025631 [TBL] [Abstract][Full Text] [Related]
2. Characteristics of successful natural enemies in models of biological control of insect pests. Beddington JR; Free CA; Lawton JH Nature; 1978 Jun; 273(5663):513-9. PubMed ID: 661961 [TBL] [Abstract][Full Text] [Related]
3. Experimental analysis of the influence of pest management practice on the efficacy of an endemic arthropod natural enemy complex of the diamondback moth. Furlong MJ; Shi ZH; Liu YQ; Guo SJ; Lu YB; Liu SS; Zalucki MP J Econ Entomol; 2004 Dec; 97(6):1814-27. PubMed ID: 15666732 [TBL] [Abstract][Full Text] [Related]
4. Natural enemy interactions constrain pest control in complex agricultural landscapes. Martin EA; Reineking B; Seo B; Steffan-Dewenter I Proc Natl Acad Sci U S A; 2013 Apr; 110(14):5534-9. PubMed ID: 23513216 [TBL] [Abstract][Full Text] [Related]
5. Assessing the impact of arthropod natural enemies on crop pests at the field scale. Macfadyen S; Davies AP; Zalucki MP Insect Sci; 2015 Feb; 22(1):20-34. PubMed ID: 25219624 [TBL] [Abstract][Full Text] [Related]
6. Spatial and temporal variation in natural enemy assemblages on Maryland native plant species. Frank SD; Shrewsbury PM; Esiekpe O Environ Entomol; 2008 Apr; 37(2):478-86. PubMed ID: 18419920 [TBL] [Abstract][Full Text] [Related]
7. Natural enemy-mediated indirect interactions among prey species: potential for enhancing biocontrol services in agroecosystems. Chailleux A; Mohl EK; Teixeira Alves M; Messelink GJ; Desneux N Pest Manag Sci; 2014 Dec; 70(12):1769-79. PubMed ID: 25256611 [TBL] [Abstract][Full Text] [Related]
8. Connecting scales: achieving in-field pest control from areawide and landscape ecology studies. Schellhorn NA; Parry HR; Macfadyen S; Wang Y; Zalucki MP Insect Sci; 2015 Feb; 22(1):35-51. PubMed ID: 25099692 [TBL] [Abstract][Full Text] [Related]
9. Relationships between natural enemy diversity and biological control. Jonsson M; Kaartinen R; Straub CS Curr Opin Insect Sci; 2017 Apr; 20():1-6. PubMed ID: 28602230 [TBL] [Abstract][Full Text] [Related]
10. Effects of predator and prey dispersal on success or failure of biological control. Tang S; Cheke RA; Xiao Y Bull Math Biol; 2009 Nov; 71(8):2025-47. PubMed ID: 19562416 [TBL] [Abstract][Full Text] [Related]
11. Development of biological control of Tetranychus urticae (Acari: Tetranychidae) and Phorodon humuli (Hemiptera: Aphididae) in Oregon hop yards. Woods JL; James DG; Lee JC; Walsh DB; Gent DH J Econ Entomol; 2014 Apr; 107(2):570-81. PubMed ID: 24772536 [TBL] [Abstract][Full Text] [Related]
12. Incorporating natural enemy units into a dynamic action threshold for the soybean aphid, Aphis glycines (Homoptera: Aphididae). Hallett RH; Bahlai CA; Xue Y; Schaafsma AW Pest Manag Sci; 2014 Jun; 70(6):879-88. PubMed ID: 24214819 [TBL] [Abstract][Full Text] [Related]
13. Natural Enemy Abundance in Southeastern Blueberry Agroecosystems: Distance to Edge and Impact of Management Practices. Whitehouse TS; Sial AA; Schmidt JM Environ Entomol; 2018 Feb; 47(1):32-38. PubMed ID: 29293975 [TBL] [Abstract][Full Text] [Related]
14. Organic agriculture promotes evenness and natural pest control. Crowder DW; Northfield TD; Strand MR; Snyder WE Nature; 2010 Jul; 466(7302):109-12. PubMed ID: 20596021 [TBL] [Abstract][Full Text] [Related]
15. Optimum timing for integrated pest management: modelling rates of pesticide application and natural enemy releases. Tang S; Tang G; Cheke RA J Theor Biol; 2010 May; 264(2):623-38. PubMed ID: 20219475 [TBL] [Abstract][Full Text] [Related]
16. Defence against multiple enemies. Poitrineau K; Brown SP; Hochberg ME J Evol Biol; 2003 Nov; 16(6):1319-27. PubMed ID: 14640423 [TBL] [Abstract][Full Text] [Related]
17. Adaptive release of natural enemies in a pest-natural enemy system with pesticide resistance. Liang J; Tang S; Cheke RA; Wu J Bull Math Biol; 2013 Nov; 75(11):2167-95. PubMed ID: 23943345 [TBL] [Abstract][Full Text] [Related]
18. Scaling up our understanding of non-consumptive effects in insect systems. Hermann SL; Landis DA Curr Opin Insect Sci; 2017 Apr; 20():54-60. PubMed ID: 28602236 [TBL] [Abstract][Full Text] [Related]
19. Integrating biological and chemical controls in decision making: European corn borer (Lepidoptera: Crambidae) control in sweet corn as an example. Musser FR; Nyrop JP; Shelton AM J Econ Entomol; 2006 Oct; 99(5):1538-49. PubMed ID: 17066781 [TBL] [Abstract][Full Text] [Related]
20. Bugs scaring bugs: enemy-risk effects in biological control systems. Culshaw-Maurer M; Sih A; Rosenheim JA Ecol Lett; 2020 Nov; 23(11):1693-1714. PubMed ID: 32902103 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]