These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30026018)

  • 1. Annotation resource of tandem repeat-containing secretory proteins in sixty fungi.
    Chang HX; Noel ZA; Sang H; Chilvers MI
    Fungal Genet Biol; 2018 Oct; 119():7-19. PubMed ID: 30026018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative hidden Markov model analysis pipeline identifies proteins characteristic of cereal-infecting fungi.
    Sperschneider J; Gardiner DM; Taylor JM; Hane JK; Singh KB; Manners JM
    BMC Genomics; 2013 Nov; 14():807. PubMed ID: 24252298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cause and Effectors: Whole-Genome Comparisons Reveal Shared but Rapidly Evolving Effector Sets among Host-Specific Plant-Castrating Fungi.
    Beckerson WC; Rodríguez de la Vega RC; Hartmann FE; Duhamel M; Giraud T; Perlin MH
    mBio; 2019 Nov; 10(6):. PubMed ID: 31690676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fungal secretome database: integrated platform for annotation of fungal secretomes.
    Choi J; Park J; Kim D; Jung K; Kang S; Lee YH
    BMC Genomics; 2010 Feb; 11():105. PubMed ID: 20146824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A TALE-inspired computational screen for proteins that contain approximate tandem repeats.
    Perycz M; Krwawicz J; Bochtler M
    PLoS One; 2017; 12(6):e0179173. PubMed ID: 28617832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The landscape of transposable elements in the finished genome of the fungal wheat pathogen Mycosphaerella graminicola.
    Dhillon B; Gill N; Hamelin RC; Goodwin SB
    BMC Genomics; 2014 Dec; 15(1):1132. PubMed ID: 25519841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity and variability of NOD-like receptors in fungi.
    Dyrka W; Lamacchia M; Durrens P; Kobe B; Daskalov A; Paoletti M; Sherman DJ; Saupe SJ
    Genome Biol Evol; 2014 Nov; 6(12):3137-58. PubMed ID: 25398782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinformatic prediction of plant-pathogenicity effector proteins of fungi.
    Jones DA; Bertazzoni S; Turo CJ; Syme RA; Hane JK
    Curr Opin Microbiol; 2018 Dec; 46():43-49. PubMed ID: 29462764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trypsin-like proteins of the fungi as possible markers of pathogenicity.
    Dubovenko AG; Dunaevsky YE; Belozersky MA; Oppert B; Lord JC; Elpidina EN
    Fungal Biol; 2010; 114(2-3):151-9. PubMed ID: 20960971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep conservation of human protein tandem repeats within the eukaryotes.
    Schaper E; Gascuel O; Anisimova M
    Mol Biol Evol; 2014 May; 31(5):1132-48. PubMed ID: 24497029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico characterization and molecular evolutionary analysis of a novel superfamily of fungal effector proteins.
    Stergiopoulos I; Kourmpetis YA; Slot JC; Bakker FT; De Wit PJ; Rokas A
    Mol Biol Evol; 2012 Nov; 29(11):3371-84. PubMed ID: 22628532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repeat-containing effectors of filamentous pathogens and symbionts.
    Ma LS; Pellegrin C; Kahmann R
    Curr Opin Microbiol; 2018 Dec; 46():123-130. PubMed ID: 29929732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative genomic analysis of monosporidial and monoteliosporic cultures for unraveling the complexity of molecular pathogenesis of Tilletia indica pathogen of wheat.
    Mishra P; Maurya R; Gupta VK; Ramteke PW; Marla SS; Kumar A
    Sci Rep; 2019 Jun; 9(1):8185. PubMed ID: 31160715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-Wide Analysis of Small Secreted Cysteine-Rich Proteins Identifies Candidate Effector Proteins Potentially Involved in Fusarium graminearum-Wheat Interactions.
    Lu S; Edwards MC
    Phytopathology; 2016 Feb; 106(2):166-76. PubMed ID: 26524547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dawn of fungal pathogen genomics.
    Xu JR; Peng YL; Dickman MB; Sharon A
    Annu Rev Phytopathol; 2006; 44():337-66. PubMed ID: 16704358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcription factor control of virulence in phytopathogenic fungi.
    John E; Singh KB; Oliver RP; Tan KC
    Mol Plant Pathol; 2021 Jul; 22(7):858-881. PubMed ID: 33973705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome plasticity in filamentous plant pathogens contributes to the emergence of novel effectors and their cellular processes in the host.
    Dong Y; Li Y; Qi Z; Zheng X; Zhang Z
    Curr Genet; 2016 Feb; 62(1):47-51. PubMed ID: 26228744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evolution and function of protein tandem repeats in plants.
    Schaper E; Anisimova M
    New Phytol; 2015 Apr; 206(1):397-410. PubMed ID: 25420631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathogenicity determinants in smut fungi revealed by genome comparison.
    Schirawski J; Mannhaupt G; Münch K; Brefort T; Schipper K; Doehlemann G; Di Stasio M; Rössel N; Mendoza-Mendoza A; Pester D; Müller O; Winterberg B; Meyer E; Ghareeb H; Wollenberg T; Münsterkötter M; Wong P; Walter M; Stukenbrock E; Güldener U; Kahmann R
    Science; 2010 Dec; 330(6010):1546-8. PubMed ID: 21148393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular diversity of fungal inhibitor cystine knot peptides evolved by domain repeat and fusion.
    Zhao J; Yuan S; Gao B; Zhu S
    FEMS Microbiol Lett; 2018 Aug; 365(15):. PubMed ID: 29961831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.