These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Further insights into quinone cofactor biogenesis: probing the role of mauG in methylamine dehydrogenase tryptophan tryptophylquinone formation. Pearson AR; De La Mora-Rey T; Graichen ME; Wang Y; Jones LH; Marimanikkupam S; Agger SA; Grimsrud PA; Davidson VL; Wilmot CM Biochemistry; 2004 May; 43(18):5494-502. PubMed ID: 15122915 [TBL] [Abstract][Full Text] [Related]
5. Roles of Copper and a Conserved Aspartic Acid in the Autocatalytic Hydroxylation of a Specific Tryptophan Residue during Cysteine Tryptophylquinone Biogenesis. Williamson HR; Sehanobish E; Shiller AM; Sanchez-Amat A; Davidson VL Biochemistry; 2017 Feb; 56(7):997-1004. PubMed ID: 28140566 [TBL] [Abstract][Full Text] [Related]
6. Tryptophan tryptophylquinone biosynthesis: a radical approach to posttranslational modification. Davidson VL; Liu A Biochim Biophys Acta; 2012 Nov; 1824(11):1299-305. PubMed ID: 22314272 [TBL] [Abstract][Full Text] [Related]
7. MauG, a diheme enzyme that catalyzes tryptophan tryptophylquinone biosynthesis by remote catalysis. Shin S; Davidson VL Arch Biochem Biophys; 2014 Feb; 544():112-8. PubMed ID: 24144526 [TBL] [Abstract][Full Text] [Related]
8. Posttranslational biosynthesis of the protein-derived cofactor tryptophan tryptophylquinone. Davidson VL; Wilmot CM Annu Rev Biochem; 2013; 82():531-50. PubMed ID: 23746262 [TBL] [Abstract][Full Text] [Related]
9. Isotope labeling studies reveal the order of oxygen incorporation into the tryptophan tryptophylquinone cofactor of methylamine dehydrogenase. Pearson AR; Marimanikkuppam S; Li X; Davidson VL; Wilmot CM J Am Chem Soc; 2006 Sep; 128(38):12416-7. PubMed ID: 16984182 [TBL] [Abstract][Full Text] [Related]
10. Roles of Conserved Residues of the Glycine Oxidase GoxA in Controlling Activity, Cooperativity, Subunit Composition, and Cysteine Tryptophylquinone Biosynthesis. Sehanobish E; Williamson HR; Davidson VL J Biol Chem; 2016 Oct; 291(44):23199-23207. PubMed ID: 27637328 [TBL] [Abstract][Full Text] [Related]
11. Kinetic and physical evidence that the diheme enzyme MauG tightly binds to a biosynthetic precursor of methylamine dehydrogenase with incompletely formed tryptophan tryptophylquinone. Li X; Fu R; Liu A; Davidson VL Biochemistry; 2008 Mar; 47(9):2908-12. PubMed ID: 18220357 [TBL] [Abstract][Full Text] [Related]
12. Uncovering novel biochemistry in the mechanism of tryptophan tryptophylquinone cofactor biosynthesis. Wilmot CM; Davidson VL Curr Opin Chem Biol; 2009 Oct; 13(4):469-74. PubMed ID: 19648051 [TBL] [Abstract][Full Text] [Related]
14. Mechanistic possibilities in MauG-dependent tryptophan tryptophylquinone biosynthesis. Li X; Jones LH; Pearson AR; Wilmot CM; Davidson VL Biochemistry; 2006 Nov; 45(44):13276-83. PubMed ID: 17073448 [TBL] [Abstract][Full Text] [Related]
15. Mechanisms of biosynthesis of protein-derived redox cofactors. Schwartz B; Klinman JP Vitam Horm; 2001; 61():219-39. PubMed ID: 11153267 [TBL] [Abstract][Full Text] [Related]
16. The tightly bound calcium of MauG is required for tryptophan tryptophylquinone cofactor biosynthesis. Shin S; Feng M; Chen Y; Jensen LM; Tachikawa H; Wilmot CM; Liu A; Davidson VL Biochemistry; 2011 Jan; 50(1):144-50. PubMed ID: 21128656 [TBL] [Abstract][Full Text] [Related]
17. Mutagenesis of tryptophan199 suggests that hopping is required for MauG-dependent tryptophan tryptophylquinone biosynthesis. Tarboush NA; Jensen LM; Yukl ET; Geng J; Liu A; Wilmot CM; Davidson VL Proc Natl Acad Sci U S A; 2011 Oct; 108(41):16956-61. PubMed ID: 21969534 [TBL] [Abstract][Full Text] [Related]
18. In crystallo posttranslational modification within a MauG/pre-methylamine dehydrogenase complex. Jensen LM; Sanishvili R; Davidson VL; Wilmot CM Science; 2010 Mar; 327(5971):1392-4. PubMed ID: 20223990 [TBL] [Abstract][Full Text] [Related]
19. A Trp199Glu MauG variant reveals a role for Trp199 interactions with pre-methylamine dehydrogenase during tryptophan tryptophylquinone biosynthesis. Abu Tarboush N; Jensen LM; Wilmot CM; Davidson VL FEBS Lett; 2013 Jun; 587(12):1736-41. PubMed ID: 23669364 [TBL] [Abstract][Full Text] [Related]
20. The Redox Properties of a Cysteine Tryptophylquinone-Dependent Glycine Oxidase Are Distinct from Those of Tryptophylquinone-Dependent Dehydrogenases. Ma Z; Davidson VL Biochemistry; 2019 Apr; 58(17):2243-2249. PubMed ID: 30945853 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]