These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30026025)

  • 1. Diversity of structures, catalytic mechanisms and processes of cofactor biosynthesis of tryptophylquinone-bearing enzymes.
    Yukl ET; Davidson VL
    Arch Biochem Biophys; 2018 Sep; 654():40-46. PubMed ID: 30026025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of recombinant biosynthetic precursors of the cysteine tryptophylquinone cofactors of l-lysine-epsilon-oxidase and glycine oxidase from Marinomonas mediterranea.
    Chacón-Verdú MD; Campillo-Brocal JC; Lucas-Elío P; Davidson VL; Sánchez-Amat A
    Biochim Biophys Acta; 2015 Sep; 1854(9):1123-31. PubMed ID: 25542375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-Derived Cofactors Revisited: Empowering Amino Acid Residues with New Functions.
    Davidson VL
    Biochemistry; 2018 Jun; 57(22):3115-3125. PubMed ID: 29498828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Further insights into quinone cofactor biogenesis: probing the role of mauG in methylamine dehydrogenase tryptophan tryptophylquinone formation.
    Pearson AR; De La Mora-Rey T; Graichen ME; Wang Y; Jones LH; Marimanikkupam S; Agger SA; Grimsrud PA; Davidson VL; Wilmot CM
    Biochemistry; 2004 May; 43(18):5494-502. PubMed ID: 15122915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of Copper and a Conserved Aspartic Acid in the Autocatalytic Hydroxylation of a Specific Tryptophan Residue during Cysteine Tryptophylquinone Biogenesis.
    Williamson HR; Sehanobish E; Shiller AM; Sanchez-Amat A; Davidson VL
    Biochemistry; 2017 Feb; 56(7):997-1004. PubMed ID: 28140566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tryptophan tryptophylquinone biosynthesis: a radical approach to posttranslational modification.
    Davidson VL; Liu A
    Biochim Biophys Acta; 2012 Nov; 1824(11):1299-305. PubMed ID: 22314272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MauG, a diheme enzyme that catalyzes tryptophan tryptophylquinone biosynthesis by remote catalysis.
    Shin S; Davidson VL
    Arch Biochem Biophys; 2014 Feb; 544():112-8. PubMed ID: 24144526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Posttranslational biosynthesis of the protein-derived cofactor tryptophan tryptophylquinone.
    Davidson VL; Wilmot CM
    Annu Rev Biochem; 2013; 82():531-50. PubMed ID: 23746262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isotope labeling studies reveal the order of oxygen incorporation into the tryptophan tryptophylquinone cofactor of methylamine dehydrogenase.
    Pearson AR; Marimanikkuppam S; Li X; Davidson VL; Wilmot CM
    J Am Chem Soc; 2006 Sep; 128(38):12416-7. PubMed ID: 16984182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of Conserved Residues of the Glycine Oxidase GoxA in Controlling Activity, Cooperativity, Subunit Composition, and Cysteine Tryptophylquinone Biosynthesis.
    Sehanobish E; Williamson HR; Davidson VL
    J Biol Chem; 2016 Oct; 291(44):23199-23207. PubMed ID: 27637328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and physical evidence that the diheme enzyme MauG tightly binds to a biosynthetic precursor of methylamine dehydrogenase with incompletely formed tryptophan tryptophylquinone.
    Li X; Fu R; Liu A; Davidson VL
    Biochemistry; 2008 Mar; 47(9):2908-12. PubMed ID: 18220357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncovering novel biochemistry in the mechanism of tryptophan tryptophylquinone cofactor biosynthesis.
    Wilmot CM; Davidson VL
    Curr Opin Chem Biol; 2009 Oct; 13(4):469-74. PubMed ID: 19648051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quinoproteins.
    McIntire WS
    FASEB J; 1994 May; 8(8):513-21. PubMed ID: 8181669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic possibilities in MauG-dependent tryptophan tryptophylquinone biosynthesis.
    Li X; Jones LH; Pearson AR; Wilmot CM; Davidson VL
    Biochemistry; 2006 Nov; 45(44):13276-83. PubMed ID: 17073448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of biosynthesis of protein-derived redox cofactors.
    Schwartz B; Klinman JP
    Vitam Horm; 2001; 61():219-39. PubMed ID: 11153267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The tightly bound calcium of MauG is required for tryptophan tryptophylquinone cofactor biosynthesis.
    Shin S; Feng M; Chen Y; Jensen LM; Tachikawa H; Wilmot CM; Liu A; Davidson VL
    Biochemistry; 2011 Jan; 50(1):144-50. PubMed ID: 21128656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutagenesis of tryptophan199 suggests that hopping is required for MauG-dependent tryptophan tryptophylquinone biosynthesis.
    Tarboush NA; Jensen LM; Yukl ET; Geng J; Liu A; Wilmot CM; Davidson VL
    Proc Natl Acad Sci U S A; 2011 Oct; 108(41):16956-61. PubMed ID: 21969534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In crystallo posttranslational modification within a MauG/pre-methylamine dehydrogenase complex.
    Jensen LM; Sanishvili R; Davidson VL; Wilmot CM
    Science; 2010 Mar; 327(5971):1392-4. PubMed ID: 20223990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Trp199Glu MauG variant reveals a role for Trp199 interactions with pre-methylamine dehydrogenase during tryptophan tryptophylquinone biosynthesis.
    Abu Tarboush N; Jensen LM; Wilmot CM; Davidson VL
    FEBS Lett; 2013 Jun; 587(12):1736-41. PubMed ID: 23669364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Redox Properties of a Cysteine Tryptophylquinone-Dependent Glycine Oxidase Are Distinct from Those of Tryptophylquinone-Dependent Dehydrogenases.
    Ma Z; Davidson VL
    Biochemistry; 2019 Apr; 58(17):2243-2249. PubMed ID: 30945853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.