These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 30026094)
21. A major forest insect pest, the pine weevil Hylobius abietis, is more susceptible to Diptera- than Coleoptera-targeted Bacillus thuringiensis strains. Tudoran A; Nordlander G; Karlberg A; Puentes A Pest Manag Sci; 2021 Mar; 77(3):1303-1315. PubMed ID: 33078548 [TBL] [Abstract][Full Text] [Related]
22. Investigating the potential of an autodissemination system for managing populations of vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae) with entomopathogenic fungi. Pope TW; Hough G; Arbona C; Roberts H; Bennison J; Buxton J; Prince G; Chandler D J Invertebr Pathol; 2018 May; 154():79-84. PubMed ID: 29655593 [TBL] [Abstract][Full Text] [Related]
23. Effects of an entomopathogen nematode on the immune response of the insect pest red palm weevil: Focus on the host antimicrobial response. Binda-Rossetti S; Mastore M; Protasoni M; Brivio MF J Invertebr Pathol; 2016 Jan; 133():110-9. PubMed ID: 26549224 [TBL] [Abstract][Full Text] [Related]
24. Occurrence of entomopathogenic fungi in tejocote (Crataegus mexicana) orchard soils and their pathogenicity against Rhagoletis pomonella. Muñiz-Reyes E; Guzmán-Franco AW; Sánchez-Escudero J; Nieto-Angel R J Appl Microbiol; 2014 Nov; 117(5):1450-62. PubMed ID: 25081747 [TBL] [Abstract][Full Text] [Related]
25. Antifeedants Produced by Bacteria Associated with the Gut of the Pine Weevil Hylobius abietis. Axelsson K; Konstanzer V; Rajarao GK; Terenius O; Seriot L; Nordenhem H; Nordlander G; Borg-Karlson AK Microb Ecol; 2017 Jul; 74(1):177-184. PubMed ID: 28074245 [TBL] [Abstract][Full Text] [Related]
26. Comparative analysis of the immune system of an invasive bark beetle, Dendroctonus valens, infected by an entomopathogenic fungus. Xu L; Zhang Y; Zhang S; Deng J; Lu M; Zhang L; Zhang J Dev Comp Immunol; 2018 Nov; 88():65-69. PubMed ID: 30017857 [TBL] [Abstract][Full Text] [Related]
27. Molecular interactions between entomopathogenic fungi (Hypocreales) and their insect host: Perspectives from stressful cuticle and hemolymph battlefields and the potential of dual RNA sequencing for future studies. Pedrini N Fungal Biol; 2018 Jun; 122(6):538-545. PubMed ID: 29801798 [TBL] [Abstract][Full Text] [Related]
28. Identification of the weevil immune genes and their expression in the bacteriome tissue. Anselme C; Pérez-Brocal V; Vallier A; Vincent-Monegat C; Charif D; Latorre A; Moya A; Heddi A BMC Biol; 2008 Oct; 6():43. PubMed ID: 18925938 [TBL] [Abstract][Full Text] [Related]
29. Potential of two entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae (Coleoptera: Scarabaeidae), as biological control agents against the June beetle. Erler F; Ates AO J Insect Sci; 2015; 15(1):. PubMed ID: 25881632 [TBL] [Abstract][Full Text] [Related]
31. Competition and intraguild predation between the braconid parasitoid Bracon hylobii and the entomopathogenic nematode Heterorhabditis downesi, natural enemies of the large pine weevil, Hylobius abietis. Everard A; Griffin CT; Dillon AB Bull Entomol Res; 2009 Apr; 99(2):151-61. PubMed ID: 19006580 [TBL] [Abstract][Full Text] [Related]
32. The Aedes aegypti IMD pathway is a critical component of the mosquito antifungal immune response. Ramirez JL; Muturi EJ; Barletta ABF; Rooney AP Dev Comp Immunol; 2019 Jun; 95():1-9. PubMed ID: 30582948 [TBL] [Abstract][Full Text] [Related]
33. Beauveria caledonica is a naturally occurring pathogen of forest beetles. Glare TR; Reay SD; Nelson TL; Moore R Mycol Res; 2008 Mar; 112(Pt 3):352-60. PubMed ID: 18308525 [TBL] [Abstract][Full Text] [Related]
34. The gut microbiota of the pine weevil is similar across Europe and resembles that of other conifer-feeding beetles. Berasategui A; Axelsson K; Nordlander G; Schmidt A; Borg-Karlson AK; Gershenzon J; Terenius O; Kaltenpoth M Mol Ecol; 2016 Aug; 25(16):4014-31. PubMed ID: 27199034 [TBL] [Abstract][Full Text] [Related]
35. Diversity of rhizosphere associated entomopathogenic fungi of perennial herbs, shrubs and coniferous trees. Fisher JJ; Rehner SA; Bruck DJ J Invertebr Pathol; 2011 Feb; 106(2):289-95. PubMed ID: 21056569 [TBL] [Abstract][Full Text] [Related]
36. Comparative proteomics analysis of silkworm hemolymph during the stages of metamorphosis via liquid chromatography and mass spectrometry. Hou Y; Zhang Y; Gong J; Tian S; Li J; Dong Z; Guo C; Peng L; Zhao P; Xia Q Proteomics; 2016 May; 16(9):1421-31. PubMed ID: 26960012 [TBL] [Abstract][Full Text] [Related]
37. Characterisation of Metarhizium majus (Hypocreales: Clavicipitaceae) isolated from the Western Cape Province, South Africa. Mathulwe LL; Jacobs K; Malan AP; Birkhofer K; Addison MF; Addison P PLoS One; 2021; 16(2):e0240955. PubMed ID: 33606688 [TBL] [Abstract][Full Text] [Related]
38. Genetic structure of the forest pest Hylobius abietis on conifer plantations at different spatial scales in Europe. Conord C; Lempérière G; Taberlet P; Després L Heredity (Edinb); 2006 Jul; 97(1):46-55. PubMed ID: 16705324 [TBL] [Abstract][Full Text] [Related]
39. Cuticle-degrading proteases and toxins as virulence markers of Beauveria bassiana (Balsamo) Vuillemin. Cito A; Barzanti GP; Strangi A; Francardi V; Zanfini A; Dreassi E J Basic Microbiol; 2016 Sep; 56(9):941-8. PubMed ID: 27198125 [TBL] [Abstract][Full Text] [Related]
40. Effect of Beauveria bassiana and Candida albicans on the cellular defense response of Spodoptera exigua. Hung SY; Boucias DG; Vey AJ J Invertebr Pathol; 1993 Mar; 61(2):179-87. PubMed ID: 8463710 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]