BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 30026237)

  • 1. Allosteric mechanisms underlying the adaptive increase in hemoglobin-oxygen affinity of the bar-headed goose.
    Jendroszek A; Malte H; Overgaard CB; Beedholm K; Natarajan C; Weber RE; Storz JF; Fago A
    J Exp Biol; 2018 Sep; 221(Pt 18):. PubMed ID: 30026237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High thermal sensitivity of blood enhances oxygen delivery in the high-flying bar-headed goose.
    Meir JU; Milsom WK
    J Exp Biol; 2013 Jun; 216(Pt 12):2172-5. PubMed ID: 23470665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenetic and structural analysis of the HbA (alphaA/betaA) and HbD (alphaD/betaA) hemoglobin genes in two high-altitude waterfowl from the Himalayas and the Andes: Bar-headed goose (Anser indicus) and Andean goose (Chloephaga melanoptera).
    McCracken KG; Barger CP; Sorenson MD
    Mol Phylogenet Evol; 2010 Aug; 56(2):649-58. PubMed ID: 20434566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The crystal structure of bar-headed goose hemoglobin in deoxy form: the allosteric mechanism of a hemoglobin species with high oxygen affinity.
    Liang Y; Hua Z; Liang X; Xu Q; Lu G
    J Mol Biol; 2001 Oct; 313(1):123-37. PubMed ID: 11601851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular basis of hemoglobin adaptation in the high-flying bar-headed goose.
    Natarajan C; Jendroszek A; Kumar A; Weber RE; Tame JRH; Fago A; Storz JF
    PLoS Genet; 2018 Apr; 14(4):e1007331. PubMed ID: 29608560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altitude matters: differences in cardiovascular and respiratory responses to hypoxia in bar-headed geese reared at high and low altitudes.
    Lague SL; Chua B; Farrell AP; Wang Y; Milsom WK
    J Exp Biol; 2016 Jul; 219(Pt 13):1974-84. PubMed ID: 27385754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Avian haemoglobins and structural basis of high affinity for oxygen: structure of bar-headed goose aquomet haemoglobin.
    Liu XZ; Li SL; Jing H; Liang YH; Hua ZQ; Lu GY
    Acta Crystallogr D Biol Crystallogr; 2001 Jun; 57(Pt 6):775-83. PubMed ID: 11375496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Hemoglobins, XLVII. Hemoglobins of the bar-headed goose (Anser indicus): primary structure and physiology of respiration, systematic and evolution].
    Oberthür W; Braunitzer G; Würdinger I
    Hoppe Seylers Z Physiol Chem; 1982 Jun; 363(6):581-90. PubMed ID: 7106705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular evolution of cytochrome C oxidase underlies high-altitude adaptation in the bar-headed goose.
    Scott GR; Schulte PM; Egginton S; Scott AL; Richards JG; Milsom WK
    Mol Biol Evol; 2011 Jan; 28(1):351-63. PubMed ID: 20685719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation of bird hemoglobins to high altitudes: demonstration of molecular mechanism by protein engineering.
    Jessen TH; Weber RE; Fermi G; Tame J; Braunitzer G
    Proc Natl Acad Sci U S A; 1991 Aug; 88(15):6519-22. PubMed ID: 1862080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced metabolism supports hypoxic flight in the high-flying bar-headed goose (
    Meir JU; York JM; Chua BA; Jardine W; Hawkes LA; Milsom WK
    Elife; 2019 Sep; 8():. PubMed ID: 31478481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of muscle phenotype for extreme high altitude flight in the bar-headed goose.
    Scott GR; Egginton S; Richards JG; Milsom WK
    Proc Biol Sci; 2009 Oct; 276(1673):3645-53. PubMed ID: 19640884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The primary structures of the major and minor hemoglobin-components of adult Andean goose (Chloephaga melanoptera, Anatidae): the mutation Leu----Ser in position 55 of the beta-chains.
    Hiebl I; Braunitzer G; Schneeganss D
    Biol Chem Hoppe Seyler; 1987 Dec; 368(12):1559-69. PubMed ID: 3442599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Have wing morphology or flight kinematics evolved for extreme high altitude migration in the bar-headed goose?
    Lee SY; Scott GR; Milsom WK
    Comp Biochem Physiol C Toxicol Pharmacol; 2008 Nov; 148(4):324-31. PubMed ID: 18635402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of HbCO structure of the bar-headed goose on photolysis thermodynamics as studied by the nanosecond laser-ultrasonic technique.
    Zhao JY; Li JH; Zhang Z; Zhang SY; Qu M; Hua ZQ; Shui XJ; Hua ZC
    Biosci Biotechnol Biochem; 2013; 77(6):1251-7. PubMed ID: 23748768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-altitude respiration of birds. The primary structures of the alpha D-chains of the Bar-headed Goose (Anser indicus), the Greylag Goose(Anser anser) and the Canada Goose (Branta canadensis).
    Hiebl I; Schneeganss D; Braunitzer G
    Biol Chem Hoppe Seyler; 1986 Jul; 367(7):591-9. PubMed ID: 3755960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen transport during progressive hypoxia in high-altitude and sea-level waterfowl.
    Black CP; Tenney SM
    Respir Physiol; 1980 Feb; 39(2):217-39. PubMed ID: 7375742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maximum running speed of captive bar-headed geese is unaffected by severe hypoxia.
    Hawkes LA; Butler PJ; Frappell PB; Meir JU; Milsom WK; Scott GR; Bishop CM
    PLoS One; 2014; 9(4):e94015. PubMed ID: 24710001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First de novo whole genome sequencing and assembly of the bar-headed goose.
    Wang W; Wang F; Hao R; Wang A; Sharshov K; Druzyaka A; Lancuo Z; Shi Y; Feng S
    PeerJ; 2020; 8():e8914. PubMed ID: 32292659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Respiratory mechanics and morphology of Tibetan and Andean high-altitude geese with divergent life histories.
    York JM; Scadeng M; McCracken KG; Milsom WK
    J Exp Biol; 2018 Jan; 221(Pt 1):. PubMed ID: 29180602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.