BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 3002637)

  • 21. Organic solvents modify the calcium control of flagellar movement in sea urchin sperm.
    Gibbons BH; Gibbons IR
    Nature; 1981 Jul; 292(5818):85-6. PubMed ID: 7278970
    [No Abstract]   [Full Text] [Related]  

  • 22. Interdoublet sliding in bovine spermatozoa: its relationship to flagellar motility and the action of inhibitory agents.
    Bird Z; Hard R; Kanous KS; Lindemann CB
    J Struct Biol; 1996; 116(3):418-28. PubMed ID: 8813000
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of sperm flagellar motility activation and chemotaxis caused by egg-derived substance(s) in sea cucumber.
    Morita M; Kitamura M; Nakajima A; Sri Susilo E; Takemura A; Okuno M
    Cell Motil Cytoskeleton; 2009 Apr; 66(4):202-14. PubMed ID: 19235200
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calyculin A-sensitive protein phosphatases are involved in maintenance of progressive movement in mouse spermatozoa in vitro by suppression of autophosphorylation of protein kinase A.
    Goto N; Harayama H
    J Reprod Dev; 2009 Jun; 55(3):327-34. PubMed ID: 19293561
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cyclic AMP-dependent activation of sea urchin and tunicate sperm motility.
    Brokaw CJ
    Ann N Y Acad Sci; 1984; 438():132-41. PubMed ID: 6100013
    [No Abstract]   [Full Text] [Related]  

  • 26. Inhibition of flagellar motility of fowl spermatozoa by L-carnitine: its relationship with respiration and phosphorylation of axonemal proteins.
    Ashizawa K; Kamiya T; Tamura I; Tsuzuki Y
    Mol Reprod Dev; 1994 Jul; 38(3):318-25. PubMed ID: 7917283
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of fowl sperm flagellar motility by protein phosphatase type 1 and its relationship with dephosphorylation of axonemal and/or accessory cytoskeletal proteins.
    Ashizawa K; Hashimoto K; Tsuzuki Y
    Biochem Biophys Res Commun; 1997 Jun; 235(1):108-12. PubMed ID: 9196045
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activation of Ciona sperm motility: phosphorylation of dynein polypeptides and effects of a tyrosine kinase inhibitor.
    Dey CS; Brokaw CJ
    J Cell Sci; 1991 Dec; 100 ( Pt 4)():815-24. PubMed ID: 1667661
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dephosphorylation of a 30-kDa protein of fowl spermatozoa by the addition of myosin light chain kinase substrate peptide inhibits the flagellar motility.
    Ashizawa K; Wishart GJ; Hashimoto K; Tsuzuki Y
    Biochem Biophys Res Commun; 1995 Oct; 215(2):706-12. PubMed ID: 7488012
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Motility of triton-demembranated sea urchin sperm flagella during digestion by trypsin.
    Brokaw CJ; Simonick TF
    J Cell Biol; 1977 Dec; 75(3):650-65. PubMed ID: 562884
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single cell imaging reveals that the motility regulator speract induces a flagellar alkalinization that precedes and is independent of Ca²⁺ influx in sea urchin spermatozoa.
    González-Cota AL; Silva PÂ; Carneiro J; Darszon A
    FEBS Lett; 2015 Jul; 589(16):2146-54. PubMed ID: 26143372
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulations of microtubule sliding by Ca2+ and cAMP and their roles in forming flagellar waveforms.
    Ishijima S
    Cell Struct Funct; 2013; 38(1):89-95. PubMed ID: 23546177
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Certain Strongylocentrotus purpuratus sperm mitochondrial proteins co-purify with low density detergent-insoluble membranes and are PKA or PKC-substrates possibly involved in sperm motility regulation.
    Loza-Huerta A; Vera-Estrella R; Darszon A; Beltrán C
    Biochim Biophys Acta; 2013 Nov; 1830(11):5305-15. PubMed ID: 23928041
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temperature-dependent flagellar motility of demembranated, cytosol-free fowl spermatozoa.
    Ashizawa K; Sakuragi M; Tsuzuki Y
    Comp Biochem Physiol A Mol Integr Physiol; 1998 Sep; 121(1):83-9. PubMed ID: 9883571
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Starting transients in sea urchin sperm flagella.
    Goldstein SF
    J Cell Biol; 1979 Jan; 80(1):61-8. PubMed ID: 33997
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The molecular basis of flagellar motility in sea urchin spermatozoa.
    Gibbons IR
    Soc Gen Physiol Ser; 1975; 30():207-32. PubMed ID: 127384
    [No Abstract]   [Full Text] [Related]  

  • 37. Heavy metals and spermatozoan motility. III conformational changes induced by divalent cations and by ATP in flagellar proteins.
    Morisawa M
    J Mechanochem Cell Motil; 1976; 3(4):239-45. PubMed ID: 1035930
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Correlation between defective motility (asthenospermia) and ATP reactivation of demembranated human spermatozoa.
    Liu DY; Jennings MG; Baker HW
    J Androl; 1987; 8(5):349-53. PubMed ID: 3667428
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cyclic adenosine 3',5' monophosphate, calcium and protein phosphorylation in flagellar motility.
    Tash JS; Means AR
    Biol Reprod; 1983 Feb; 28(1):75-104. PubMed ID: 6299416
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphorothioate analogs of ATP as the substrates of dynein and ciliary or flagellar movement.
    Shimizu T; Okuno M; Marchese-Ragona SP; Johnson KA
    Eur J Biochem; 1990 Aug; 191(3):543-50. PubMed ID: 2143985
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.