These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 30026565)

  • 1. Microglia permit climbing fiber elimination by promoting GABAergic inhibition in the developing cerebellum.
    Nakayama H; Abe M; Morimoto C; Iida T; Okabe S; Sakimura K; Hashimoto K
    Nat Commun; 2018 Jul; 9(1):2830. PubMed ID: 30026565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GABAergic inhibition regulates developmental synapse elimination in the cerebellum.
    Nakayama H; Miyazaki T; Kitamura K; Hashimoto K; Yanagawa Y; Obata K; Sakimura K; Watanabe M; Kano M
    Neuron; 2012 Apr; 74(2):384-96. PubMed ID: 22542190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postsynaptic P/Q-type Ca2+ channel in Purkinje cell mediates synaptic competition and elimination in developing cerebellum.
    Hashimoto K; Tsujita M; Miyazaki T; Kitamura K; Yamazaki M; Shin HS; Watanabe M; Sakimura K; Kano M
    Proc Natl Acad Sci U S A; 2011 Jun; 108(24):9987-92. PubMed ID: 21628556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maturation of Cerebellar Purkinje Cell Population Activity during Postnatal Refinement of Climbing Fiber Network.
    Good JM; Mahoney M; Miyazaki T; Tanaka KF; Sakimura K; Watanabe M; Kitamura K; Kano M
    Cell Rep; 2017 Nov; 21(8):2066-2073. PubMed ID: 29166599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium imaging of climbing fiber innervation fields in developing mouse Purkinje cells.
    Scelfo B; Strata P; Knöpfel T
    J Neurophysiol; 2003 May; 89(5):2555-63. PubMed ID: 12612029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity-dependent maturation of climbing fiber to Purkinje cell synapses during postnatal cerebellar development.
    Kano M; Hashimoto K
    Cerebellum; 2012 Jun; 11(2):449-50. PubMed ID: 22194041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retrograde BDNF to TrkB signaling promotes synapse elimination in the developing cerebellum.
    Choo M; Miyazaki T; Yamazaki M; Kawamura M; Nakazawa T; Zhang J; Tanimura A; Uesaka N; Watanabe M; Sakimura K; Kano M
    Nat Commun; 2017 Aug; 8(1):195. PubMed ID: 28775326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of insulin-like growth factor I on climbing fibre synapse elimination during cerebellar development.
    Kakizawa S; Yamada K; Iino M; Watanabe M; Kano M
    Eur J Neurosci; 2003 Feb; 17(3):545-54. PubMed ID: 12581172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translocation of a "winner" climbing fiber to the Purkinje cell dendrite and subsequent elimination of "losers" from the soma in developing cerebellum.
    Hashimoto K; Ichikawa R; Kitamura K; Watanabe M; Kano M
    Neuron; 2009 Jul; 63(1):106-18. PubMed ID: 19607796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Type 2 K+ -Cl- cotransporter is preferentially recruited to climbing fiber synapses during development and the stellate cell-targeting dendritic zone at adulthood in cerebellar Purkinje cells.
    Kawakita I; Uchigashima M; Konno K; Miyazaki T; Yamasaki M; Watanabe M
    Eur J Neurosci; 2013 Feb; 37(4):532-43. PubMed ID: 23216656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PTPδ is a presynaptic organizer for the formation and maintenance of climbing fiber to Purkinje cell synapses in the developing cerebellum.
    Okuno Y; Sakoori K; Matsuyama K; Yamasaki M; Watanabe M; Hashimoto K; Watanabe T; Kano M
    Front Mol Neurosci; 2023; 16():1206245. PubMed ID: 37426069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of parallel fiber-Purkinje cell synapse formation on postnatal development of climbing fiber-Purkinje cell synapses in the cerebellum.
    Hashimoto K; Yoshida T; Sakimura K; Mishina M; Watanabe M; Kano M
    Neuroscience; 2009 Sep; 162(3):601-11. PubMed ID: 19166909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dendritic translocation establishes the winner in cerebellar climbing fiber synapse elimination.
    Carrillo J; Nishiyama N; Nishiyama H
    J Neurosci; 2013 May; 33(18):7641-53. PubMed ID: 23637158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple Phases of Climbing Fiber Synapse Elimination in the Developing Cerebellum.
    Kano M; Watanabe T; Uesaka N; Watanabe M
    Cerebellum; 2018 Dec; 17(6):722-734. PubMed ID: 30009357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Macrophage Colony-Stimulating Factor Receptor on the Proliferation and Survival of Microglia Following Systemic Nerve and Cuprizone-Induced Injuries.
    Pons V; Laflamme N; Préfontaine P; Rivest S
    Front Immunol; 2020; 11():47. PubMed ID: 32082318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phospholipase C β3 is Required for Climbing Fiber Synapse Elimination in Aldolase C-positive Compartments of the Developing Mouse Cerebellum.
    Rai Y; Watanabe T; Matsuyama K; Sakimura K; Uesaka N; Kano M
    Neuroscience; 2021 May; 462():36-43. PubMed ID: 32360594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global scaling down of excitatory postsynaptic responses in cerebellar Purkinje cells impairs developmental synapse elimination.
    Kawata S; Miyazaki T; Yamazaki M; Mikuni T; Yamasaki M; Hashimoto K; Watanabe M; Sakimura K; Kano M
    Cell Rep; 2014 Aug; 8(4):1119-29. PubMed ID: 25127140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental α₂-adrenergic regulation of noradrenergic synaptic facilitation at cerebellar GABAergic synapses.
    Hirono M; Nagao S; Obata K
    Neuroscience; 2014 Jan; 256():242-51. PubMed ID: 24157933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Synapse elimination and functional neural circuit formation in the cerebellum].
    Kano M
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2013 Jun; 33(3):137-40. PubMed ID: 25069248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Replacement of microglia in the aged brain reverses cognitive, synaptic, and neuronal deficits in mice.
    Elmore MRP; Hohsfield LA; Kramár EA; Soreq L; Lee RJ; Pham ST; Najafi AR; Spangenberg EE; Wood MA; West BL; Green KN
    Aging Cell; 2018 Dec; 17(6):e12832. PubMed ID: 30276955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.