BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 30026603)

  • 1. FoxM1 repression during human aging leads to mitotic decline and aneuploidy-driven full senescence.
    Macedo JC; Vaz S; Bakker B; Ribeiro R; Bakker PL; Escandell JM; Ferreira MG; Medema R; Foijer F; Logarinho E
    Nat Commun; 2018 Jul; 9(1):2834. PubMed ID: 30026603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitotic misregulation and human aging.
    Ly DH; Lockhart DJ; Lerner RA; Schultz PG
    Science; 2000 Mar; 287(5462):2486-92. PubMed ID: 10741968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aneuploidy analysis in fibroblasts of human premature aging syndromes by FISH during in vitro cellular aging.
    Mukherjee AB; Costello C
    Mech Ageing Dev; 1998 Jun; 103(2):209-22. PubMed ID: 9701772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo cyclic induction of the FOXM1 transcription factor delays natural and progeroid aging phenotypes and extends healthspan.
    Ribeiro R; Macedo JC; Costa M; Ustiyan V; Shindyapina AV; Tyshkovskiy A; Gomes RN; Castro JP; Kalin TV; Vasques-Nóvoa F; Nascimento DS; Dmitriev SE; Gladyshev VN; Kalinichenko VV; Logarinho E
    Nat Aging; 2022 May; 2(5):397-411. PubMed ID: 37118067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitotic defects lead to pervasive aneuploidy and accompany loss of RB1 activity in mouse LmnaDhe dermal fibroblasts.
    Pratt CH; Curtain M; Donahue LR; Shopland LS
    PLoS One; 2011 Mar; 6(3):e18065. PubMed ID: 21464947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of transcriptional modules during human fibroblast ageing.
    Lee Y; Shivashankar GV
    Sci Rep; 2020 Nov; 10(1):19086. PubMed ID: 33154459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FOXM1 is critical for the fitness recovery of chromosomally unstable cells.
    Pan F; Chocarro S; Ramos M; Chen Y; Alonso de la Vega A; Somogyi K; Sotillo R
    Cell Death Dis; 2023 Jul; 14(7):430. PubMed ID: 37452072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of mitochondrial dysfunction in Hutchinson-Gilford progeria syndrome through use of stable isotope labeling with amino acids in cell culture.
    Rivera-Torres J; Acín-Perez R; Cabezas-Sánchez P; Osorio FG; Gonzalez-Gómez C; Megias D; Cámara C; López-Otín C; Enríquez JA; Luque-García JL; Andrés V
    J Proteomics; 2013 Oct; 91():466-77. PubMed ID: 23969228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mutant form of lamin A that causes Hutchinson-Gilford progeria is a biomarker of cellular aging in human skin.
    McClintock D; Ratner D; Lokuge M; Owens DM; Gordon LB; Collins FS; Djabali K
    PLoS One; 2007 Dec; 2(12):e1269. PubMed ID: 18060063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FoxM1: at the crossroads of ageing and cancer.
    Laoukili J; Stahl M; Medema RH
    Biochim Biophys Acta; 2007 Jan; 1775(1):92-102. PubMed ID: 17014965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abrogation of B-Raf
    Choi YW; Nam GE; Kim YH; Yoon JE; Park JH; Kim JH; Kang SY; Park TJ
    Biochem Biophys Res Commun; 2019 Aug; 516(3):866-871. PubMed ID: 31270027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene profile of replicative senescence is different from progeria or elderly donor.
    Park WY; Hwang CI; Kang MJ; Seo JY; Chung JH; Kim YS; Lee JH; Kim H; Kim KA; Yoo HJ; Seo JS
    Biochem Biophys Res Commun; 2001 Apr; 282(4):934-9. PubMed ID: 11352641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NF-κB activation impairs somatic cell reprogramming in ageing.
    Soria-Valles C; Osorio FG; Gutiérrez-Fernández A; De Los Angeles A; Bueno C; Menéndez P; Martín-Subero JI; Daley GQ; Freije JM; López-Otín C
    Nat Cell Biol; 2015 Aug; 17(8):1004-13. PubMed ID: 26214134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosomal instability and pro-inflammatory response in aging.
    Barroso-Vilares M; Logarinho E
    Mech Ageing Dev; 2019 Sep; 182():111118. PubMed ID: 31102604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. p53 isoforms regulate premature aging in human cells.
    von Muhlinen N; Horikawa I; Alam F; Isogaya K; Lissa D; Vojtesek B; Lane DP; Harris CC
    Oncogene; 2018 May; 37(18):2379-2393. PubMed ID: 29429991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signaling pathway activation drift during aging: Hutchinson-Gilford Progeria Syndrome fibroblasts are comparable to normal middle-age and old-age cells.
    Aliper AM; Csoka AB; Buzdin A; Jetka T; Roumiantsev S; Moskalev A; Zhavoronkov A
    Aging (Albany NY); 2015 Jan; 7(1):26-37. PubMed ID: 25587796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small-molecule inhibition of aging-associated chromosomal instability delays cellular senescence.
    Barroso-Vilares M; Macedo JC; Reis M; Warren JD; Compton D; Logarinho E
    EMBO Rep; 2020 May; 21(5):e49248. PubMed ID: 32134180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered regulation of platelet-derived growth factor A-chain and c-fos gene expression in senescent progeria fibroblasts.
    Winkles JA; O'Connor ML; Friesel R
    J Cell Physiol; 1990 Aug; 144(2):313-25. PubMed ID: 2166059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progerin impairs chromosome maintenance by depleting CENP-F from metaphase kinetochores in Hutchinson-Gilford progeria fibroblasts.
    Eisch V; Lu X; Gabriel D; Djabali K
    Oncotarget; 2016 Apr; 7(17):24700-18. PubMed ID: 27015553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous expression of MMB-FOXM1 complex components enables efficient bypass of senescence.
    Kumari R; Hummerich H; Shen X; Fischer M; Litovchick L; Mittnacht S; DeCaprio JA; Jat PS
    Sci Rep; 2021 Nov; 11(1):21506. PubMed ID: 34728711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.