These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 30027375)

  • 1. Potential of four aquatic plant species to remove
    Vanhoudt N; Van Ginneken P; Nauts R; Van Hees M
    Environ Sci Pollut Res Int; 2018 Sep; 25(27):27187-27195. PubMed ID: 30027375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of fluoride contamination in water by three aquatic plants.
    Karmakar S; Mukherjee J; Mukherjee S
    Int J Phytoremediation; 2016; 18(3):222-7. PubMed ID: 26247406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoremediation of synthetic textile dyes: biosorption and enzymatic degradation involved in efficient dye decolorization by Eichhornia crassipes (Mart.) Solms and Pistia stratiotes L.
    Ekanayake MS; Udayanga D; Wijesekara I; Manage P
    Environ Sci Pollut Res Int; 2021 Apr; 28(16):20476-20486. PubMed ID: 33410027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uptake of perfluoroalkyl substances PFOS and PFOA by free-floating hydrophytes
    Kenyon A; Masisak J; Satchwell M; Wu J; Newman L
    Int J Phytoremediation; 2024; 26(9):1429-1438. PubMed ID: 38584457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation potential of selected plants for nitrate and phosphorus from ground water.
    Sundaralingam T; Gnanavelrajah N
    Int J Phytoremediation; 2014; 16(3):275-84. PubMed ID: 24912224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoremediation potential of
    Tabinda AB; Irfan R; Yasar A; Iqbal A; Mahmood A
    Environ Technol; 2020 May; 41(12):1514-1519. PubMed ID: 30355050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor).
    Alvarado S; Guédez M; Lué-Merú MP; Nelson G; Alvaro A; Jesús AC; Gyula Z
    Bioresour Technol; 2008 Nov; 99(17):8436-40. PubMed ID: 18442903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment of textile effluents with
    Tabinda AB; Arif RA; Yasar A; Baqir M; Rasheed R; Mahmood A; Iqbal A
    Int J Phytoremediation; 2019; 21(10):939-943. PubMed ID: 31016996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes.
    Mishra VK; Upadhyaya AR; Pandey SK; Tripathi BD
    Bioresour Technol; 2008 Mar; 99(5):930-6. PubMed ID: 17475484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India.
    Singh NK; Raghubanshi AS; Upadhyay AK; Rai UN
    Ecotoxicol Environ Saf; 2016 Aug; 130():224-33. PubMed ID: 27131746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of the phytoremediation conditions of wastewater in post-treatment by
    Ntakiyiruta P; Briton BGH; Nsavyimana G; Adouby K; Nahimana D; Ntakimazi G; Reinert L
    Environ Technol; 2022 May; 43(12):1805-1818. PubMed ID: 33198589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing water hyacinth (Eichhornia crassopes) and lettuce (Pistia stratiotes) effectiveness in aquaculture wastewater treatment.
    Akinbile CO; Yusoff MS
    Int J Phytoremediation; 2012 Mar; 14(3):201-11. PubMed ID: 22567705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation of wastewater toxicity using water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes).
    Victor KK; Séka Y; Norbert KK; Sanogo TA; Celestin AB
    Int J Phytoremediation; 2016 Oct; 18(10):949-55. PubMed ID: 27159271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity of the macrophytes Pistia stratiotes and Eichhornia crassipes to hexazinone and dissipation of this pesticide in aquatic ecosystems.
    Ribeiro VHV; Alencar BTB; Dos Santos NMC; da Costa VAM; Dos Santos JB; Francino DMT; Souza MF; Silva DV
    Ecotoxicol Environ Saf; 2019 Jan; 168():177-183. PubMed ID: 30388534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential of Lemna minor and Eichhornia crassipes for the phytoremediation of water contaminated with Nickel (II).
    Moreno-Rubio N; Ortega-Villamizar D; Marimon-Bolívar W; Bustillo-Lecompte C; Tejeda-Benítez LP
    Environ Monit Assess; 2022 Nov; 195(1):119. PubMed ID: 36396866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of chlorpyrifos by water lettuce (Pistia stratiotes L.) and duckweed (Lemna minor L.).
    Prasertsup P; Ariyakanon N
    Int J Phytoremediation; 2011 Apr; 13(4):383-95. PubMed ID: 21598800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Floating aquatic plants for total nitrogen and phosphorus removal from treated swine wastewater and their biomass characteristics.
    Sudiarto SIA; Renggaman A; Choi HL
    J Environ Manage; 2019 Feb; 231():763-769. PubMed ID: 30412795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aquatic arsenic: phytoremediation using floating macrophytes.
    Rahman MA; Hasegawa H
    Chemosphere; 2011 Apr; 83(5):633-46. PubMed ID: 21435676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can we use Cd-contaminated macrophytes for biogas production?
    Fernandes KD; Cañote SJB; Ribeiro EM; Thiago Filho GL; Fonseca AL
    Environ Sci Pollut Res Int; 2019 Sep; 26(27):27620-27630. PubMed ID: 29948672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoremediation of perchlorate by free floating macrophytes.
    Bhaskaran K; Vijaya Nadaraja A; Tumbath S; Babu Shah L; Gangadharan Puthiya Veetil P
    J Hazard Mater; 2013 Sep; 260():901-6. PubMed ID: 23872336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.