BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 30027559)

  • 1. Transplantation of Ears Provides Insights into Inner Ear Afferent Pathfinding Properties.
    Gordy C; Straka H; Houston DW; Fritzsch B; Elliott KL
    Dev Neurobiol; 2018 Nov; 78(11):1064-1080. PubMed ID: 30027559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ear transplantations reveal conservation of inner ear afferent pathfinding cues.
    Elliott KL; Fritzsch B
    Sci Rep; 2018 Sep; 8(1):13819. PubMed ID: 30218045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transplantation of Xenopus laevis ears reveals the ability to form afferent and efferent connections with the spinal cord.
    Elliott KL; Fritzsch B
    Int J Dev Biol; 2010; 54(10):1443-51. PubMed ID: 21302254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation.
    Ma Q; Anderson DJ; Fritzsch B
    J Assoc Res Otolaryngol; 2000 Sep; 1(2):129-43. PubMed ID: 11545141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative view of the central organization of afferent and efferent circuitry for the inner ear.
    Meredith GE
    Acta Biol Hung; 1988; 39(2-3):229-49. PubMed ID: 3077006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The lateral-line and inner-ear afferents in larval and adult urodeles.
    Fritzsch B
    Brain Behav Evol; 1988; 31(6):325-48. PubMed ID: 2843258
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Stoner ZA; Ketchum EM; Sheltz-Kempf S; Blinkiewicz PV; Elliott KL; Duncan JS
    Front Neurosci; 2021; 15():779871. PubMed ID: 35153658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peripheral innervation patterns of vestibular nerve afferents in the bullfrog utriculus.
    Baird RA; Schuff NR
    J Comp Neurol; 1994 Apr; 342(2):279-98. PubMed ID: 8201035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutant mice reveal the molecular and cellular basis for specific sensory connections to inner ear epithelia and primary nuclei of the brain.
    Fritzsch B; Pauley S; Matei V; Katz DM; Xiang M; Tessarollo L
    Hear Res; 2005 Aug; 206(1-2):52-63. PubMed ID: 16080998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuroanatomical and histochemical evidence for the presence of common lateral line and inner ear efferents and of efferents to the basilar papilla in a frog, Xenopus laevis.
    Hellmann B; Fritzsch B
    Brain Behav Evol; 1996; 47(4):185-94. PubMed ID: 9156781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peripheral and central aspects of the acoustic and lateral line system of a bottom dwelling catfish, Ancistrus sp.
    Bleckmann H; Niemann U; Fritzsch B
    J Comp Neurol; 1991 Dec; 314(3):452-66. PubMed ID: 1726106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topologically correct central projections of tetrapod inner ear afferents require Fzd3.
    Duncan JS; Fritzsch B; Houston DW; Ketchum EM; Kersigo J; Deans MR; Elliott KL
    Sci Rep; 2019 Jul; 9(1):10298. PubMed ID: 31311957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DiI reveals a prenatal arrival of efferents at the differentiating otocyst of mice.
    Fritzsch B; Nichols DH
    Hear Res; 1993 Feb; 65(1-2):51-60. PubMed ID: 8458759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A disorganized innervation of the inner ear persists in the absence of ErbB2.
    Morris JK; Maklad A; Hansen LA; Feng F; Sorensen C; Lee KF; Macklin WB; Fritzsch B
    Brain Res; 2006 May; 1091(1):186-99. PubMed ID: 16630588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vestibulospinal relations: vestibular influences on gamma motoneurons and primary afferents.
    Pompeiano O
    Prog Brain Res; 1972; 37():197-232. PubMed ID: 4264584
    [No Abstract]   [Full Text] [Related]  

  • 16. The development of vestibulocochlear efferents and cochlear afferents in mice.
    Bruce LL; Kingsley J; Nichols DH; Fritzsch B
    Int J Dev Neurosci; 1997 Jul; 15(4-5):671-92. PubMed ID: 9263042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of the inner ear efferent system across vertebrate species.
    Simmons DD
    J Neurobiol; 2002 Nov; 53(2):228-50. PubMed ID: 12382278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transplantation of Xenopus laevis tissues to determine the ability of motor neurons to acquire a novel target.
    Elliott KL; Houston DW; Fritzsch B
    PLoS One; 2013; 8(2):e55541. PubMed ID: 23383335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efferent vestibular system in the squirrel monkey: anatomical location and influence on afferent activity.
    Goldberg JM; Fernández C
    J Neurophysiol; 1980 Apr; 43(4):986-1025. PubMed ID: 6767000
    [No Abstract]   [Full Text] [Related]  

  • 20. Reticulospinal actions on primary afferent depolarization of cutaneous and muscle afferents in the isolated frog neuraxis.
    González H; Jiménez I; Rudomin P
    Exp Brain Res; 1993; 95(2):261-70. PubMed ID: 8224051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.