These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30027685)

  • 1. Peptide Nanophotonics: From Optical Waveguiding to Precise Medicine and Multifunctional Biochips.
    Apter B; Lapshina N; Handelman A; Fainberg BD; Rosenman G
    Small; 2018 Aug; 14(34):e1801147. PubMed ID: 30027685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide Integrated Optics.
    Handelman A; Lapshina N; Apter B; Rosenman G
    Adv Mater; 2018 Feb; 30(5):. PubMed ID: 29226468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light waveguiding in bioinspired peptide nanostructures.
    Apter B; Lapshina N; Handelman A; Rosenman G
    J Pept Sci; 2019 May; 25(5):e3164. PubMed ID: 30900328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide Optical waveguides.
    Handelman A; Apter B; Shostak T; Rosenman G
    J Pept Sci; 2017 Feb; 23(2):95-103. PubMed ID: 27966267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear and nonlinear optical waveguiding in bio-inspired peptide nanotubes.
    Handelman A; Apter B; Turko N; Rosenman G
    Acta Biomater; 2016 Jan; 30():72-77. PubMed ID: 26546415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physics and engineering of peptide supramolecular nanostructures.
    Handelman A; Beker P; Amdursky N; Rosenman G
    Phys Chem Chem Phys; 2012 May; 14(18):6391-408. PubMed ID: 22460950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstructive Phase Transition in Ultrashort Peptide Nanostructures and Induced Visible Photoluminescence.
    Handelman A; Kuritz N; Natan A; Rosenman G
    Langmuir; 2016 Mar; 32(12):2847-62. PubMed ID: 26496411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinspired peptide nanotubes: deposition technology, basic physics and nanotechnology applications.
    Rosenman G; Beker P; Koren I; Yevnin M; Bank-Srour B; Mishina E; Semin S
    J Pept Sci; 2011 Feb; 17(2):75-87. PubMed ID: 21234978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoactive properties of supramolecular assembled short peptides.
    Sun B; Tao K; Jia Y; Yan X; Zou Q; Gazit E; Li J
    Chem Soc Rev; 2019 Aug; 48(16):4387-4400. PubMed ID: 31237282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From molecular design and materials construction to organic nanophotonic devices.
    Zhang C; Yan Y; Zhao YS; Yao J
    Acc Chem Res; 2014 Dec; 47(12):3448-58. PubMed ID: 25343682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Information physics fundamentals of nanophotonics.
    Naruse M; Tate N; Aono M; Ohtsu M
    Rep Prog Phys; 2013 May; 76(5):056401. PubMed ID: 23574991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear Graphene Nanoplasmonics.
    Cox JD; GarcĂ­a de Abajo FJ
    Acc Chem Res; 2019 Sep; 52(9):2536-2547. PubMed ID: 31448890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amphiphilic Peptide Self-Assembly: Expansion to Hybrid Materials.
    Mikhalevich V; Craciun I; Kyropoulou M; Palivan CG; Meier W
    Biomacromolecules; 2017 Nov; 18(11):3471-3480. PubMed ID: 28776980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organized chromophoric assemblies for nonlinear optical materials: towards (sub)wavelength scale architectures.
    Xu J; Semin S; Rasing T; Rowan AE
    Small; 2015 Mar; 11(9-10):1113-29. PubMed ID: 25358754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing the optical response and biosensing capabilities of bioinspired peptide micro-waveguides exploiting chromatic aberration.
    Tiwari R; Roy S; Mondal S; Ghosh N; Haldar D; Banerjee A
    J Biophotonics; 2022 Oct; 15(10):e202200044. PubMed ID: 35730356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing single-molecule fluorescence with nanophotonics.
    Acuna G; Grohmann D; Tinnefeld P
    FEBS Lett; 2014 Oct; 588(19):3547-52. PubMed ID: 24928436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quadrupole-dipole transform based on optical near-field interactions in engineered nanostructures.
    Tate N; Sugiyama H; Naruse M; Nomura W; Yatsui T; Kawazoe T; Ohtsu M
    Opt Express; 2009 Jun; 17(13):11113-21. PubMed ID: 19550511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Waveguiding and focusing in a bio-medium with an optofluidic cell chain.
    Wu T; Chen X; Gong Z; Li Y; Zhang Y
    Acta Biomater; 2020 Feb; 103():165-171. PubMed ID: 31812842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zero-mode waveguides: sub-wavelength nanostructures for single molecule studies at high concentrations.
    Moran-Mirabal JM; Craighead HG
    Methods; 2008 Sep; 46(1):11-7. PubMed ID: 18586103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.