These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 30027690)

  • 1. The Role of Axon Transport in Neuroprotection and Regeneration.
    Shah SH; Goldberg JL
    Dev Neurobiol; 2018 Oct; 78(10):998-1010. PubMed ID: 30027690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interleukin-6 is an efficacious marker of axonal transport disruption during experimental glaucoma and stimulates neuritogenesis in cultured retinal ganglion cells.
    Chidlow G; Wood JP; Ebneter A; Casson RJ
    Neurobiol Dis; 2012 Dec; 48(3):568-81. PubMed ID: 22884876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dock GEFs and their therapeutic potential: neuroprotection and axon regeneration.
    Namekata K; Kimura A; Kawamura K; Harada C; Harada T
    Prog Retin Eye Res; 2014 Nov; 43():1-16. PubMed ID: 25016980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The optic nerve head is the site of axonal transport disruption, axonal cytoskeleton damage and putative axonal regeneration failure in a rat model of glaucoma.
    Chidlow G; Ebneter A; Wood JP; Casson RJ
    Acta Neuropathol; 2011 Jun; 121(6):737-51. PubMed ID: 21311901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tubulin expression and axonal transport in injured and regenerating neurons in the adult mammalian central nervous system.
    Fournier AE; McKerracher L
    Biochem Cell Biol; 1995; 73(9-10):659-64. PubMed ID: 8714686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absence of galectin-3 promotes neuroprotection in retinal ganglion cells after optic nerve injury.
    Abreu CA; De Lima SV; Mendonça HR; Goulart CO; Martinez AM
    Histol Histopathol; 2017 Mar; 32(3):253-262. PubMed ID: 27255346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical, Electromagnetic, Ultrasound Wave Therapies, and Electronic Implants for Neuronal Rejuvenation, Neuroprotection, Axonal Regeneration, and IOP Reduction.
    Sharif NA
    J Ocul Pharmacol Ther; 2023 Oct; 39(8):477-498. PubMed ID: 36126293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring Optic Nerve Axon Regeneration.
    Li HJ; Sun ZL; Yang XT; Zhu L; Feng DF
    Curr Neuropharmacol; 2017; 15(6):861-873. PubMed ID: 28029073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axonal regeneration of cat retinal ganglion cells is promoted by nipradilol, an anti-glaucoma drug.
    Watanabe M; Tokita Y; Yata T
    Neuroscience; 2006 Jun; 140(2):517-28. PubMed ID: 16549267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Risk Factors for Retinal Ganglion Cell Distress in Glaucoma and Neuroprotective Potential Intervention.
    Vernazza S; Oddone F; Tirendi S; Bassi AM
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wnt signaling promotes axonal regeneration following optic nerve injury in the mouse.
    Patel AK; Park KK; Hackam AS
    Neuroscience; 2017 Feb; 343():372-383. PubMed ID: 28011153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoreceptor degeneration in the RCS rat attenuates dendritic transport and axonal regeneration of ganglion cells.
    Pavlidis M; Fischer D; Thanos S
    Invest Ophthalmol Vis Sci; 2000 Jul; 41(8):2318-28. PubMed ID: 10892879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Role of Axonal Transport in Glaucoma.
    Dias MS; Luo X; Ribas VT; Petrs-Silva H; Koch JC
    Int J Mol Sci; 2022 Apr; 23(7):. PubMed ID: 35409291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rescue of Glaucomatous Neurodegeneration by Differentially Modulating Neuronal Endoplasmic Reticulum Stress Molecules.
    Yang L; Li S; Miao L; Huang H; Liang F; Teng X; Xu L; Wang Q; Xiao W; Ridder WH; Ferguson TA; Chen DF; Kaufman RJ; Hu Y
    J Neurosci; 2016 May; 36(21):5891-903. PubMed ID: 27225776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuronal Intrinsic Regenerative Capacity: The Impact of Microtubule Organization and Axonal Transport.
    Murillo B; Mendes Sousa M
    Dev Neurobiol; 2018 Oct; 78(10):952-959. PubMed ID: 29738096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mini-Review: Impaired Axonal Transport and Glaucoma.
    Fahy ET; Chrysostomou V; Crowston JG
    Curr Eye Res; 2016; 41(3):273-83. PubMed ID: 26125320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The challenge of regenerative therapies for the optic nerve in glaucoma.
    Calkins DJ; Pekny M; Cooper ML; Benowitz L;
    Exp Eye Res; 2017 Apr; 157():28-33. PubMed ID: 28153739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional evaluation of retinal ganglion cell axon regeneration and pathfinding in whole mouse tissue after injury.
    Luo X; Salgueiro Y; Beckerman SR; Lemmon VP; Tsoulfas P; Park KK
    Exp Neurol; 2013 Sep; 247():653-62. PubMed ID: 23510761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Return of function after CNS axon regeneration: Lessons from injury-responsive intrinsically photosensitive and alpha retinal ganglion cells.
    Berry M; Ahmed Z; Logan A
    Prog Retin Eye Res; 2019 Jul; 71():57-67. PubMed ID: 30458239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulating axonal regeneration of mature retinal ganglion cells and overcoming inhibitory signaling.
    Fischer D
    Cell Tissue Res; 2012 Jul; 349(1):79-85. PubMed ID: 22293973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.