These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30027956)

  • 1. Understanding the function of water during the gelation of globular proteins by temperature-dependent near infrared spectroscopy.
    Ma L; Cui X; Cai W; Shao X
    Phys Chem Chem Phys; 2018 Aug; 20(30):20132-20140. PubMed ID: 30027956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-dimensional near-IR correlation spectroscopy study of molten globule-like state of ovalbumin in acidic pH region: simultaneous changes in hydration and secondary structure.
    Murayama K; Ozaki Y
    Biopolymers; 2002; 67(6):394-405. PubMed ID: 12209447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From curdlan powder to the triple helix gel structure: an attenuated total reflection-infrared study of the gelation process.
    Gagnon MA; Lafleur M
    Appl Spectrosc; 2007 Apr; 61(4):374-8. PubMed ID: 17456255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High intensity ultrasound modified ovalbumin: Structure, interface and gelation properties.
    Xiong W; Wang Y; Zhang C; Wan J; Shah BR; Pei Y; Zhou B; Li J; Li B
    Ultrason Sonochem; 2016 Jul; 31():302-9. PubMed ID: 26964953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural changes during heat-induced gelation of globular protein dispersions.
    Ikeda S; Nishinari K
    Biopolymers; 2001 Aug; 59(2):87-102. PubMed ID: 11373722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the N-terminal amphiphilic region of ovalbumin during heat-induced aggregation and gelation.
    Kawachi Y; Kameyama R; Handa A; Takahashi N; Tanaka N
    J Agric Food Chem; 2013 Sep; 61(36):8668-75. PubMed ID: 23909792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring the thermal gelation of cellulose ethers in situ using attenuated total reflectance fourier transform infrared spectroscopy.
    Banks SR; Sammon C; Melia CD; Timmins P
    Appl Spectrosc; 2005 Apr; 59(4):452-9. PubMed ID: 15901330
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Xiong C; Ma B; Qiu T; Li X; Shao X; Guo L
    Phys Chem Chem Phys; 2022 Jul; 24(28):17004-17013. PubMed ID: 35775968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The study of protein conformation and hydration characteristics of meat batters at various phase transition temperatures combined with Low-field nuclear magnetic resonance and Fourier transform infrared spectroscopy.
    Han Z; Zhang J; Zheng J; Li X; Shao JH
    Food Chem; 2019 May; 280():263-269. PubMed ID: 30642495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the role of water in the aggregation of poly(N,N-dimethylaminoethyl methacrylate) in aqueous solution using temperature-dependent near-infrared spectroscopy.
    Wang L; Zhu X; Cai W; Shao X
    Phys Chem Chem Phys; 2019 Mar; 21(10):5780-5789. PubMed ID: 30801574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative hydration effect causes thermal unfolding of proteins and water activity plays a key role in protein stability in solutions.
    Miyawaki O; Dozen M; Hirota K
    J Biosci Bioeng; 2016 Aug; 122(2):203-7. PubMed ID: 26896315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydration and Hydrogen Bond Network of Water during the Coil-to-Globule Transition in Poly(N-isopropylacrylamide) Aqueous Solution at Cloud Point Temperature.
    Shiraga K; Naito H; Suzuki T; Kondo N; Ogawa Y
    J Phys Chem B; 2015 Apr; 119(17):5576-87. PubMed ID: 25865253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyzing the Water Confined in Hydrogel Using Near-Infrared Spectroscopy.
    Ma B; Cai W; Shao X
    Appl Spectrosc; 2022 Jul; 76(7):773-782. PubMed ID: 35255722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the Interaction Between Oligopeptide and Water in Aqueous Solution Using Temperature-Dependent Near-Infrared Spectroscopy.
    Cheng D; Cai W; Shao X
    Appl Spectrosc; 2018 Sep; 72(9):1354-1361. PubMed ID: 29664323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional infrared spectroscopy of intermolecular hydrogen bonds in the condensed phase.
    Elsaesser T
    Acc Chem Res; 2009 Sep; 42(9):1220-8. PubMed ID: 19425543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acid-induced cold gelation of globular proteins: effects of protein aggregate characteristics and disulfide bonding on rheological properties.
    Alting AC; Weijers M; de Hoog EH; van de Pijpekamp AM; Cohen Stuart MA; Hamer RJ; de Kruif CG; Visschers RW
    J Agric Food Chem; 2004 Feb; 52(3):623-31. PubMed ID: 14759159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and dynamical insights into the molten-globule form of ovalbumin.
    Bhattacharya M; Mukhopadhyay S
    J Phys Chem B; 2012 Jan; 116(1):520-31. PubMed ID: 22097968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of water structure on gelation of agar in glycerol solutions and phase diagram of agar organogels.
    Boral S; Bohidar HB
    J Phys Chem B; 2012 Jun; 116(24):7113-21. PubMed ID: 22657388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the temperature-responsive polymers and gels based on N-propylacrylamides and N-propylmethacrylamides.
    Kano M; Kokufuta E
    Langmuir; 2009 Aug; 25(15):8649-55. PubMed ID: 19323452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Choice of the end functional groups in tri(p-phenylenevinylene) derivatives controls its physical gelation abilities.
    Samanta SK; Pal A; Bhattacharya S
    Langmuir; 2009 Aug; 25(15):8567-78. PubMed ID: 19402602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.