These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 30027969)

  • 1. Enhanced magnetic microcytometer with 3D flow focusing for cell enumeration.
    Chícharo A; Martins M; Barnsley LC; Taouallah A; Fernandes J; Silva BFB; Cardoso S; Diéguez L; Espiña B; Freitas PP
    Lab Chip; 2018 Aug; 18(17):2593-2603. PubMed ID: 30027969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Webcam-based flow cytometer using wide-field imaging for low cell number detection at high throughput.
    Balsam J; Bruck HA; Rasooly A
    Analyst; 2014 Sep; 139(17):4322-9. PubMed ID: 24995370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing.
    Mao X; Lin SC; Dong C; Huang TJ
    Lab Chip; 2009 Jun; 9(11):1583-9. PubMed ID: 19458866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An adaptive three-dimensional hydrodynamic focusing microfluidic impedance flow cytometer.
    Zhou Y; Wang J; Liu T; Wu M; Lan Y; Jia C; Zhao J
    Analyst; 2023 Jul; 148(14):3239-3246. PubMed ID: 37341575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wheatstone bridge giant-magnetoresistance based cell counter.
    Lee CP; Lai MF; Huang HT; Lin CW; Wei ZH
    Biosens Bioelectron; 2014 Jul; 57():48-53. PubMed ID: 24534580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Straightforward 3D hydrodynamic focusing in femtosecond laser fabricated microfluidic channels.
    Paiè P; Bragheri F; Vazquez RM; Osellame R
    Lab Chip; 2014 Jun; 14(11):1826-33. PubMed ID: 24740611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magneto-Hydrodynamic Fractionation (MHF) for continuous and sheathless sorting of high-concentration paramagnetic microparticles.
    Kumar V; Rezai P
    Biomed Microdevices; 2017 Jun; 19(2):39. PubMed ID: 28466285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic focusing--a versatile tool.
    Golden JP; Justin GA; Nasir M; Ligler FS
    Anal Bioanal Chem; 2012 Jan; 402(1):325-35. PubMed ID: 21952728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Sensitivity and High Throughput Magnetic Flow CMOS Cytometers With 2D Oscillator Array and Inter-Sensor Spectrogram Cross-Correlation.
    Tang H; Venkatesh S; Lin Z; Lu X; Saeeidi H; Javanmard M; Sengupta K
    IEEE Trans Biomed Circuits Syst; 2024 Aug; 18(4):923-937. PubMed ID: 38393850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device.
    Lee MG; Choi S; Park JK
    Lab Chip; 2009 Nov; 9(21):3155-60. PubMed ID: 19823733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetoresistive chip cytometer.
    Loureiro J; Andrade PZ; Cardoso S; da Silva CL; Cabral JM; Freitas PP
    Lab Chip; 2011 Jul; 11(13):2255-61. PubMed ID: 21562656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A robust electrical microcytometer with 3-dimensional hydrofocusing.
    Watkins N; Venkatesan BM; Toner M; Rodriguez W; Bashir R
    Lab Chip; 2009 Nov; 9(22):3177-84. PubMed ID: 19865723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and numerical investigation into micro-flow cytometer with 3-D hydrodynamic focusing effect and micro-weir structure.
    Hou HH; Tsai CH; Fu LM; Yang RJ
    Electrophoresis; 2009 Jul; 30(14):2507-15. PubMed ID: 19639570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microflow cytometers with integrated hydrodynamic focusing.
    Frankowski M; Theisen J; Kummrow A; Simon P; Ragusch H; Bock N; Schmidt M; Neukammer J
    Sensors (Basel); 2013 Apr; 13(4):4674-93. PubMed ID: 23571670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free whole blood cell differentiation based on multiple frequency AC impedance and light scattering analysis in a micro flow cytometer.
    Simon P; Frankowski M; Bock N; Neukammer J
    Lab Chip; 2016 Jun; 16(12):2326-38. PubMed ID: 27229300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of unlabeled particles in the low micrometer size range using light scattering and hydrodynamic 3D focusing in a microfluidic system.
    Zhuang G; Jensen TG; Kutter JP
    Electrophoresis; 2012 Jul; 33(12):1715-22. PubMed ID: 22740459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lateral and cross-lateral focusing of spherical particles in a square microchannel.
    Choi YS; Seo KW; Lee SJ
    Lab Chip; 2011 Feb; 11(3):460-5. PubMed ID: 21072415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universally applicable three-dimensional hydrodynamic microfluidic flow focusing.
    Chiu YJ; Cho SH; Mei Z; Lien V; Wu TF; Lo YH
    Lab Chip; 2013 May; 13(9):1803-9. PubMed ID: 23493956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfluidic cytometer for white blood cell analysis.
    Peng T; Su X; Cheng X; Wei Z; Su X; Li Q
    Cytometry A; 2021 Nov; 99(11):1107-1113. PubMed ID: 34369647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.