These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 30028082)
41. Variations in bacterial and archaeal communities along depth profiles of Alaskan soil cores. Tripathi BM; Kim M; Kim Y; Byun E; Yang JW; Ahn J; Lee YK Sci Rep; 2018 Jan; 8(1):504. PubMed ID: 29323168 [TBL] [Abstract][Full Text] [Related]
42. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Zhou Z; Wang C; Luo Y Nat Commun; 2020 Jun; 11(1):3072. PubMed ID: 32555185 [TBL] [Abstract][Full Text] [Related]
43. Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data. Schädel C; Schuur EA; Bracho R; Elberling B; Knoblauch C; Lee H; Luo Y; Shaver GR; Turetsky MR Glob Chang Biol; 2014 Feb; 20(2):641-52. PubMed ID: 24399755 [TBL] [Abstract][Full Text] [Related]
44. From the High Arctic to the Equator: Do Soil Metagenomes Differ According to Our Expectations? Kerfahi D; Tripathi BM; Dong K; Kim M; Kim H; Ferry Slik JW; Go R; Adams JM Microb Ecol; 2019 Jan; 77(1):168-185. PubMed ID: 29882154 [TBL] [Abstract][Full Text] [Related]
45. Alpine soil carbon is vulnerable to rapid microbial decomposition under climate cooling. Wu L; Yang Y; Wang S; Yue H; Lin Q; Hu Y; He Z; Van Nostrand JD; Hale L; Li X; Gilbert JA; Zhou J ISME J; 2017 Sep; 11(9):2102-2111. PubMed ID: 28534876 [TBL] [Abstract][Full Text] [Related]
46. [Microbial communities in regions of arctic settlements]. Kirtsideli IY; Abakumov EV; Teshebaev SB; Zelenskaya MS; Vlasov DY; Krylenkov VA; Ryabusheva YV; Sokolov VT; Barantsevich EP Gig Sanit; 2016; 95(10):293-9. PubMed ID: 29431333 [TBL] [Abstract][Full Text] [Related]
47. Are secondary forests second-rate? Comparing peatland greenhouse gas emissions, chemical and microbial community properties between primary and secondary forests in Peninsular Malaysia. Dhandapani S; Ritz K; Evers S; Yule CM; Sjögersten S Sci Total Environ; 2019 Mar; 655():220-231. PubMed ID: 30471590 [TBL] [Abstract][Full Text] [Related]
48. Rich and cold: diversity, distribution and drivers of fungal communities in patterned-ground ecosystems of the North American Arctic. Timling I; Walker DA; Nusbaum C; Lennon NJ; Taylor DL Mol Ecol; 2014 Jul; 23(13):3258-72. PubMed ID: 24689939 [TBL] [Abstract][Full Text] [Related]
49. Activity and diversity of methane-oxidizing bacteria along a Norwegian sub-Arctic glacier forefield. Mateos-Rivera A; Øvreås L; Wilson B; Yde JC; Finster KW FEMS Microbiol Ecol; 2018 May; 94(5):. PubMed ID: 29617984 [TBL] [Abstract][Full Text] [Related]
50. Climatic role of terrestrial ecosystem under elevated CO Liu S; Ji C; Wang C; Chen J; Jin Y; Zou Z; Li S; Niu S; Zou J Ecol Lett; 2018 Jul; 21(7):1108-1118. PubMed ID: 29736982 [TBL] [Abstract][Full Text] [Related]
51. The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. Yergeau E; Hogues H; Whyte LG; Greer CW ISME J; 2010 Sep; 4(9):1206-14. PubMed ID: 20393573 [TBL] [Abstract][Full Text] [Related]
52. Functional diversity of terrestrial microbial decomposers and their substrates. Hättenschwiler S; Fromin N; Barantal S C R Biol; 2011 May; 334(5-6):393-402. PubMed ID: 21640948 [TBL] [Abstract][Full Text] [Related]
53. Widespread production of nonmicrobial greenhouse gases in soils. Wang B; Lerdau M; He Y Glob Chang Biol; 2017 Nov; 23(11):4472-4482. PubMed ID: 28585372 [TBL] [Abstract][Full Text] [Related]
54. Comparative genomic and physiological analysis provides insights into the role of Acidobacteria in organic carbon utilization in Arctic tundra soils. Rawat SR; Männistö MK; Bromberg Y; Häggblom MM FEMS Microbiol Ecol; 2012 Nov; 82(2):341-55. PubMed ID: 22486608 [TBL] [Abstract][Full Text] [Related]
55. Local Environmental Factors Drive Divergent Grassland Soil Bacterial Communities in the Western Swiss Alps. Yashiro E; Pinto-Figueroa E; Buri A; Spangenberg JE; Adatte T; Niculita-Hirzel H; Guisan A; van der Meer JR Appl Environ Microbiol; 2016 Nov; 82(21):6303-6316. PubMed ID: 27542929 [TBL] [Abstract][Full Text] [Related]
56. Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration. Gao B; Huang T; Ju X; Gu B; Huang W; Xu L; Rees RM; Powlson DS; Smith P; Cui S Glob Chang Biol; 2018 Dec; 24(12):5590-5606. PubMed ID: 30118572 [TBL] [Abstract][Full Text] [Related]
57. Methane turnover and methanotrophic communities in arctic aquatic ecosystems of the Lena Delta, Northeast Siberia. Osudar R; Liebner S; Alawi M; Yang S; Bussmann I; Wagner D FEMS Microbiol Ecol; 2016 Aug; 92(8):. PubMed ID: 27230921 [TBL] [Abstract][Full Text] [Related]
58. Carbon isotopic signature of interstitial soil gases reveals the potential role of ecosystems in mitigating geogenic greenhouse gas emissions: Case studies from hydrothermal systems in Italy. Venturi S; Tassi F; Magi F; Cabassi J; Ricci A; Capecchiacci F; Caponi C; Nisi B; Vaselli O Sci Total Environ; 2019 Mar; 655():887-898. PubMed ID: 30481715 [TBL] [Abstract][Full Text] [Related]
59. Temperature response of denitrification rate and greenhouse gas production in agricultural river marginal wetland soils. Bonnett SA; Blackwell MS; Leah R; Cook V; O'Connor M; Maltby E Geobiology; 2013 May; 11(3):252-67. PubMed ID: 23480257 [TBL] [Abstract][Full Text] [Related]
60. Temperature-dependent shift from labile to recalcitrant carbon sources of arctic heterotrophs. Biasi C; Rusalimova O; Meyer H; Kaiser C; Wanek W; Barsukov P; Junger H; Richter A Rapid Commun Mass Spectrom; 2005; 19(11):1401-8. PubMed ID: 15880633 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]