These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 3002884)

  • 1. Studies on the stimulation of the bacterial, collagenolytic enzyme clostridiopeptidase A by cobalt (II) ions.
    Evans CH; Mason GC
    Int J Biochem; 1986; 18(1):89-92. PubMed ID: 3002884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of tervalent lanthanide ions with bacterial collagenase (clostridiopeptidase A).
    Evans CH
    Biochem J; 1981 Jun; 195(3):677-84. PubMed ID: 6274311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and reconstitution with divalent metal ions of class I and class II Clostridium histolyticum apocollagenases.
    Angleton EL; Van Wart HE
    Biochemistry; 1988 Sep; 27(19):7406-12. PubMed ID: 2849991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation by direct metal exchange and kinetic study of active site metal substituted class I and class II Clostridium histolyticum collagenases.
    Angleton EL; Van Wart HE
    Biochemistry; 1988 Sep; 27(19):7413-8. PubMed ID: 2849992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zinc metalloenzyme properties of active and latent collagenase from rabbit bone.
    Swann JC; Reynolds JJ; Galloway WA
    Biochem J; 1981 Apr; 195(1):41-9. PubMed ID: 6272747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of Zn(II) and Co(II) in the kinetics of inactivation of aminoacylase by 1,10-phenanthroline and reconstitution of the apoenzyme.
    Wu HB; Tsou CL
    Biochem J; 1993 Dec; 296 ( Pt 2)(Pt 2):435-41. PubMed ID: 8257435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-specific substituted cobalt(II) horse liver alcohol dehydrogenases. Preparation and characterization in solution, crystalline and immobilized state.
    Maret W; Andersson I; Dietrich H; Schneider-Bernlöhr H; Einarsson R; Zeppezauer M
    Eur J Biochem; 1979 Aug; 98(2):501-12. PubMed ID: 488110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The metal ion requirement for activation of latent collagenase from human polymorphonuclear leucocytes.
    Macartney HW; Tschesche H
    Hoppe Seylers Z Physiol Chem; 1981 Nov; 362(11):1523-31. PubMed ID: 6273285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of inhibition of human neutrophil collagenase by Gold(I) chrysotherapeutic compounds. Interaction at a heavy metal binding site.
    Mallya SK; Van Wart HE
    J Biol Chem; 1989 Jan; 264(3):1594-601. PubMed ID: 2536367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Study on the effect of some group-specific agents on clostridiopeptidase].
    Balaevskaia TO; Solov'eva NI; Orekhovich VN
    Biokhimiia; 1989 May; 54(5):804-10. PubMed ID: 2547458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and kinetic bases for the metal preference of the M18 aminopeptidase from Pseudomonas aeruginosa.
    Nguyen DD; Pandian R; Kim D; Ha SC; Yoon HJ; Kim KS; Yun KH; Kim JH; Kim KK
    Biochem Biophys Res Commun; 2014 Apr; 447(1):101-7. PubMed ID: 24704201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibacterial cobalt(II), nickel(II) and zinc(II) complexes of nicotinic acid-derived Schiff-bases.
    Chohan ZH; Rau A; Noreen S; Scozzafava A; Supuran CT
    J Enzyme Inhib Med Chem; 2002 Apr; 17(2):101-6. PubMed ID: 12420756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divalent metal derivatives of the hamster dihydroorotase domain.
    Huang DT; Thomas MA; Christopherson RI
    Biochemistry; 1999 Aug; 38(31):9964-70. PubMed ID: 10433703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory effect of some transition metal ions on growth and pigment formation of Serratia marcescens.
    Furman CR; Owusu VI; Tsang JC
    Microbios; 1984; 40(159):45-51. PubMed ID: 6374387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of lymphocyte transformation induced by zinc ions.
    Berger NA; Skinner AM
    J Cell Biol; 1974 Apr; 61(1):45-55. PubMed ID: 4819306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of Mg(II) on the spectral properties of Co(II) alkaline phosphatase.
    Anderson RA; Kennedy FS; Vallee BL
    Biochemistry; 1976 Aug; 15(17):3710-6. PubMed ID: 782521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The 1H nuclear-magnetic-resonance spectroscopy of cobalt(II)-beta-lactamase II.
    Galdes A; Hill HA; Baldwin GS; Waley SG; Abraham EP
    Biochem J; 1980 Jun; 187(3):789-95. PubMed ID: 6821370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of an inhibitory metal binding site in carboxypeptidase A.
    Larsen KS; Auld DS
    Biochemistry; 1991 Mar; 30(10):2613-8. PubMed ID: 2001351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective substitution in vitro of an intrinsic zinc of Escherichia coli RNA polymerase with various divalent metals.
    Chatterji D; Wu FY
    Biochemistry; 1982 Sep; 21(19):4651-6. PubMed ID: 6753922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cadmium restores in vitro splicing activity inhibited by zinc-depletion.
    Lee MJ; Ayaki H; Goji J; Kitamura K; Nishio H
    Arch Toxicol; 2006 Oct; 80(10):638-43. PubMed ID: 16645842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.