These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 30029209)

  • 1. An Analytical Poroelastic Model of a Nonhomogeneous Medium Under Creep Compression for Ultrasound Poroelastography Applications-Part II.
    Islam MT; Reddy JN; Righetti R
    J Biomech Eng; 2019 Jun; 141(6):. PubMed ID: 30029209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Analytical Poroelastic Model of a Nonhomogeneous Medium Under Creep Compression for Ultrasound Poroelastography Applications-Part I.
    Islam MT; Reddy JN; Righetti R
    J Biomech Eng; 2019 Jun; 141(6):. PubMed ID: 30029267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An analytical poroelastic model of a spherical tumor embedded in normal tissue under creep compression.
    Islam MT; Righetti R
    J Biomech; 2019 May; 89():48-56. PubMed ID: 31000348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards an acoustic model-based poroelastic imaging method: I. Theoretical foundation.
    Berry GP; Bamber JC; Armstrong CG; Miller NR; Barbone PE
    Ultrasound Med Biol; 2006 Apr; 32(4):547-67. PubMed ID: 16616601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An analytical poroelastic model for ultrasound elastography imaging of tumors.
    Islam MT; Chaudhry A; Unnikrishnan G; Reddy JN; Righetti R
    Phys Med Biol; 2018 Jan; 63(2):025031. PubMed ID: 29336354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The feasibility of estimating and imaging the mechanical behavior of poroelastic materials using axial strain elastography.
    Righetti R; Righetti M; Ophir J; Krouskop TA
    Phys Med Biol; 2007 Jun; 52(11):3241-59. PubMed ID: 17505100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards an acoustic model-based poroelastic imaging method: II. experimental investigation.
    Berry GP; Bamber JC; Miller NR; Barbone PE; Bush NL; Armstrong CG
    Ultrasound Med Biol; 2006 Dec; 32(12):1869-85. PubMed ID: 17169699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method for generating permeability elastograms and Poisson's ratio time-constant elastograms.
    Righetti R; Ophir J; Krouskop TA
    Ultrasound Med Biol; 2005 Jun; 31(6):803-16. PubMed ID: 15936496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of compression-induced solid stress, fluid pressure and mechanopathological parameters in cancers
    Khan MHR; Islam MT; Taraballi F; Righetti R
    Phys Med Biol; 2023 Jun; 68(13):. PubMed ID: 37327794
    [No Abstract]   [Full Text] [Related]  

  • 10. The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression.
    Sun DD; Guo XE; Likhitpanichkul M; Lai WM; Mow VC
    J Biomech Eng; 2004 Feb; 126(1):6-16. PubMed ID: 15171124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of Poisson's ratio of articular cartilage by indentation using different-sized indenters.
    Jin H; Lewis JL
    J Biomech Eng; 2004 Apr; 126(2):138-45. PubMed ID: 15179843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poroelastography: imaging the poroelastic properties of tissues.
    Konofagou EE; Harrigan TP; Ophir J; Krouskop TA
    Ultrasound Med Biol; 2001 Oct; 27(10):1387-97. PubMed ID: 11731052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing image quality in effective Poisson's ratio elastography and poroelastography: II.
    Righetti R; Ophir J; Kumar AT; Krouskop TA
    Phys Med Biol; 2007 Mar; 52(5):1321-33. PubMed ID: 17301457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: inhomogeneous response in unconfined compression.
    Li LP; Buschmann MD; Shirazi-Adl A
    J Biomech; 2000 Dec; 33(12):1533-41. PubMed ID: 11006376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical behavior of human embryonic stem cell pellet under unconfined compression.
    Ma G; Petersen E; Leong KW; Liao K
    Biomech Model Mechanobiol; 2012 May; 11(5):703-14. PubMed ID: 21858691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skinfold creep under load of caliper. Linear visco- and poroelastic model simulations.
    Nowak J; Nowak B; Kaczmarek M
    Acta Bioeng Biomech; 2015; 17(4):39-48. PubMed ID: 26899777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The feasibility of using elastography for imaging the Poisson's ratio in porous media.
    Righetti R; Ophir J; Srinivasan S; Krouskop TA
    Ultrasound Med Biol; 2004 Feb; 30(2):215-28. PubMed ID: 14998674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An analysis of the unconfined compression of articular cartilage.
    Armstrong CG; Lai WM; Mow VC
    J Biomech Eng; 1984 May; 106(2):165-73. PubMed ID: 6738022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of mechanical and hydraulic properties of PVA hydrogels.
    Kazimierska-Drobny K; El Fray M; Kaczmarek M
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():48-54. PubMed ID: 25579895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poroviscoelastic finite element model including continuous fiber distribution for the simulation of nanoindentation tests on articular cartilage.
    Taffetani M; Griebel M; Gastaldi D; Klisch SM; Vena P
    J Mech Behav Biomed Mater; 2014 Apr; 32():17-30. PubMed ID: 24389384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.