BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 30029234)

  • 1. The Multi-Axial Failure Response of Porcine Trabecular Skull Bone Estimated Using Microstructural Simulations.
    Fang Z; Ranslow AN; De Tomas P; Gunnarsson A; Weerasooriya T; Satapathy S; Thompson KA; Kraft RH
    J Biomech Eng; 2018 Oct; 140(10):. PubMed ID: 30029234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabric-based Tsai-Wu yield criteria for vertebral trabecular bone in stress and strain space.
    Wolfram U; Gross T; Pahr DH; Schwiedrzik J; Wilke HJ; Zysset PK
    J Mech Behav Biomed Mater; 2012 Nov; 15():218-28. PubMed ID: 23159819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the macroscopic yield behaviour of trabecular bone using a nonlinear homogenisation approach.
    Levrero-Florencio F; Margetts L; Sales E; Xie S; Manda K; Pankaj P
    J Mech Behav Biomed Mater; 2016 Aug; 61():384-396. PubMed ID: 27108348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The modified super-ellipsoid yield criterion for human trabecular bone.
    Bayraktar HH; Gupta A; Kwon RY; Papadopoulos P; Keaveny TM
    J Biomech Eng; 2004 Dec; 126(6):677-84. PubMed ID: 15796326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Apparent- and Tissue-Level Yield Behaviors of L4 Vertebral Trabecular Bone and Their Associations with Microarchitectures.
    Gong H; Wang L; Fan Y; Zhang M; Qin L
    Ann Biomed Eng; 2016 Apr; 44(4):1204-23. PubMed ID: 26104807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical stimuli of trabecular bone in osteoporosis: A numerical simulation by finite element analysis of microarchitecture.
    Sandino C; McErlain DD; Schipilow J; Boyd SK
    J Mech Behav Biomed Mater; 2017 Feb; 66():19-27. PubMed ID: 27829192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear micro-CT based FE modeling of trabecular bone-Sensitivity of apparent response to tissue constitutive law and bone volume fraction.
    Sabet FA; Jin O; Koric S; Jasiuk I
    Int J Numer Method Biomed Eng; 2018 Apr; 34(4):e2941. PubMed ID: 29168345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro-finite-element method to assess elastic properties of trabecular bone at micro- and macroscopic level.
    Rieger R; Auregan JC; Hoc T
    Morphologie; 2018 Mar; 102(336):12-20. PubMed ID: 28893491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental validation of a nonlinear μFE model based on cohesive-frictional plasticity for trabecular bone.
    Schwiedrzik J; Gross T; Bina M; Pretterklieber M; Zysset P; Pahr D
    Int J Numer Method Biomed Eng; 2016 Apr; 32(4):e02739. PubMed ID: 26224581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementation and validation of finite element model of skull deformation and failure response during uniaxial compression.
    Alexander SL; Weerasooriya T
    J Mech Behav Biomed Mater; 2021 Mar; 115():104302. PubMed ID: 33476873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Horn and horn core trabecular bone of bighorn sheep rams absorbs impact energy and reduces brain cavity accelerations during high impact ramming of the skull.
    Drake A; Haut Donahue TL; Stansloski M; Fox K; Wheatley BB; Donahue SW
    Acta Biomater; 2016 Oct; 44():41-50. PubMed ID: 27544811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differing trabecular bone architecture in dinosaurs and mammals contribute to stiffness and limits on bone strain.
    Aguirre TG; Ingrole A; Fuller L; Seek TW; Fiorillo AR; Sertich JJW; Donahue SW
    PLoS One; 2020; 15(8):e0237042. PubMed ID: 32813735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the mesostructure on the compressive mechanical response of adolescent porcine cranial bone.
    Alexander SL; Gunnarsson CA; Weerasooriya T
    J Mech Behav Biomed Mater; 2019 Aug; 96():96-107. PubMed ID: 31029999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The quartic piecewise-linear criterion for the multiaxial yield behavior of human trabecular bone.
    Sanyal A; Scheffelin J; Keaveny TM
    J Biomech Eng; 2015 Jan; 137(1):0110091-01100910. PubMed ID: 25401413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Trabecular Bone on Peri-Implant Stress and Strain Based on Micro-CT Finite Element Modeling of Beagle Dog.
    Liao SH; Zhu XH; Xie J; Sohodeb VK; Ding X
    Biomed Res Int; 2016; 2016():3926941. PubMed ID: 27403424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain rate dependency of bovine trabecular bone under impact loading at sideways fall velocity.
    Enns-Bray WS; Ferguson SJ; Helgason B
    J Biomech; 2018 Jun; 75():46-52. PubMed ID: 29773425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anisotropic and strain rate-dependent mechanical properties and constitutive modeling of the cancellous bone from piglet cervical vertebrae.
    Li Z; Wang J; Song G; Ji C; Han X
    Comput Methods Programs Biomed; 2020 May; 188():105279. PubMed ID: 31865093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear homogenisation of trabecular bone: Effect of solid phase constitutive model.
    Levrero-Florencio F; Manda K; Margetts L; Pankaj P
    Proc Inst Mech Eng H; 2017 May; 231(5):405-414. PubMed ID: 28427317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive changes in micromechanical environments of cancellous and cortical bone in response to in vivo loading and disuse.
    Yang H; Xu X; Bullock W; Main RP
    J Biomech; 2019 May; 89():85-94. PubMed ID: 31047696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of boundary conditions on yield properties of human femoral trabecular bone.
    Panyasantisuk J; Pahr DH; Zysset PK
    Biomech Model Mechanobiol; 2016 Oct; 15(5):1043-53. PubMed ID: 26517986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.