BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 30029234)

  • 21. Mechanical loading causes detectable changes in morphometric measures of trabecular structure in human cancellous bone.
    Yeni YN; Wu B; Huang L; Oravec D
    J Biomech Eng; 2013 May; 135(5):54505. PubMed ID: 24231966
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel fracture mechanics model explaining the axial penetration of bone-like porous, compressible solids by various orthopaedic implant tips.
    Kulper SA; Sze KY; Fang CX; Ren X; Guo M; Schneider K; Leung F; Lu W; Ngan A
    J Mech Behav Biomed Mater; 2018 Apr; 80():128-136. PubMed ID: 29414468
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimation of the effective yield properties of human trabecular bone using nonlinear micro-finite element analyses.
    Wili P; Maquer G; Panyasantisuk J; Zysset PK
    Biomech Model Mechanobiol; 2017 Dec; 16(6):1925-1936. PubMed ID: 28643141
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pelvic Construct Prediction of Trabecular and Cortical Bone Structural Architecture.
    Zaharie DT; Phillips ATM
    J Biomech Eng; 2018 Sep; 140(9):. PubMed ID: 29801165
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical modelling of cancellous bone damage using an orthotropic failure criterion and tissue elastic properties as a function of the mineral content and microporosity.
    Megías R; Vercher-Martínez A; Belda R; Peris JL; Larrainzar-Garijo R; Giner E; Fuenmayor FJ
    Comput Methods Programs Biomed; 2022 Jun; 219():106764. PubMed ID: 35366593
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Are we crying Wolff? 3D printed replicas of trabecular bone structure demonstrate higher stiffness and strength during off-axis loading.
    Wood Z; Lynn L; Nguyen JT; Black MA; Patel M; Barak MM
    Bone; 2019 Oct; 127():635-645. PubMed ID: 31390534
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differences in Trabecular Microarchitecture and Simplified Boundary Conditions Limit the Accuracy of Quantitative Computed Tomography-Based Finite Element Models of Vertebral Failure.
    Hussein AI; Louzeiro DT; Unnikrishnan GU; Morgan EF
    J Biomech Eng; 2018 Feb; 140(2):0210041-02100411. PubMed ID: 29196764
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of bone microstructure on the mechanical properties of skull cortical bone - A combined experimental and computational approach.
    Boruah S; Subit DL; Paskoff GR; Shender BS; Crandall JR; Salzar RS
    J Mech Behav Biomed Mater; 2017 Jan; 65():688-704. PubMed ID: 27743944
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anisotropic Permeability of Trabecular Bone and its Relationship to Fabric and Architecture: A Computational Study.
    Kreipke TC; Niebur GL
    Ann Biomed Eng; 2017 Jun; 45(6):1543-1554. PubMed ID: 28155122
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a crushable foam model for human trabecular bone.
    Soltanihafshejani N; Bitter T; Janssen D; Verdonschot N
    Med Eng Phys; 2021 Oct; 96():53-63. PubMed ID: 34565553
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new algorithm for estimating the rod volume fraction and the trabecular thickness from in vivo computed tomography.
    Thomsen FS; Peña JA; Lu Y; Huber G; Morlock M; Glüer CC; Delrieux CA
    Med Phys; 2016 Dec; 43(12):6598. PubMed ID: 27908155
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of the linear finite element prediction of deformation and strain of human cancellous bone to 3D digital volume correlation measurements.
    Zauel R; Yeni YN; Bay BK; Dong XN; Fyhrie DP
    J Biomech Eng; 2006 Feb; 128(1):1-6. PubMed ID: 16532610
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Not only stiffness, but also yield strength of the trabecular structure determined by non-linear µFE is best predicted by bone volume fraction and fabric tensor.
    Musy SN; Maquer G; Panyasantisuk J; Wandel J; Zysset PK
    J Mech Behav Biomed Mater; 2017 Jan; 65():808-813. PubMed ID: 27788473
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Finite element analysis of ramming in Ovis canadensis.
    Maity P; Tekalur SA
    J Biomech Eng; 2011 Feb; 133(2):021009. PubMed ID: 21280881
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Parametric investigation of the effects of load level on fatigue crack growth in trabecular bone based on artificial neural network computation.
    Mouss ME; Zellagui S; Nasraoui M; Hambli R
    Proc Inst Mech Eng H; 2020 Aug; 234(8):784-793. PubMed ID: 32436783
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simplified boundary conditions alter cortical-trabecular load sharing at the distal radius; A multiscale finite element analysis.
    Johnson JE; Troy KL
    J Biomech; 2018 Jan; 66():180-185. PubMed ID: 29137724
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of SR-microCT radiation on the mechanical integrity of trabecular bone using in situ mechanical testing and digital volume correlation.
    Peña Fernández M; Cipiccia S; Dall'Ara E; Bodey AJ; Parwani R; Pani M; Blunn GW; Barber AH; Tozzi G
    J Mech Behav Biomed Mater; 2018 Dec; 88():109-119. PubMed ID: 30165258
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biaxial failure behavior of bovine tibial trabecular bone.
    Niebur GL; Feldstein MJ; Keaveny TM
    J Biomech Eng; 2002 Dec; 124(6):699-705. PubMed ID: 12596638
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sensitivity of damage predictions to tissue level yield properties and apparent loading conditions.
    Niebur GL; Yuen JC; Burghardt AJ; Keaveny TM
    J Biomech; 2001 May; 34(5):699-706. PubMed ID: 11311712
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of cancellous and cortical bone strain in the in vivo mouse tibial loading model using microCT-based finite element analysis.
    Yang H; Butz KD; Duffy D; Niebur GL; Nauman EA; Main RP
    Bone; 2014 Sep; 66():131-9. PubMed ID: 24925445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.